本文作者:kaifamei

一种基于普通克里金插值的臭氧传输变化分析方法与流程

更新时间:2025-04-03 15:47:57 0条评论

一种基于普通克里金插值的臭氧传输变化分析方法与流程



1.本发明涉及数据处理技术领域,具体涉及一种基于普通克里金插值的臭氧传输变化分析方法。


背景技术:



2.目前分析臭氧传输变化时,往往是利用普通克里金插值方法对臭氧数据进行插值,对插值之后的臭氧数据进行分析。普通克里金插值方法通过构建距离-半方差图来拟合臭氧数据分布模型,在拟合臭氧数据分布模型的过程中对距离-半方差图中的点进行分组采用的是等距离分组的方法,没有考虑不同方向的地势不同而导致不同方向的臭氧传输过程的不同。基于此,本发明提出了一种基于普通克里金插值的臭氧传输变化分析方法,通过计算臭氧数据的方向性以及距离-半方差图中密度信息对距离-半方差图中的点进行分组,进而得到更为精确的组代表数据,使得根据组代表数据拟合的臭氧数据分布模型更为准确,提高了利用臭氧数据分布模型进行插值的准确性,有助于得到有效的插值数据用于臭氧浓度变化情况分析。


技术实现要素:



3.本发明提供一种基于普通克里金插值的臭氧传输变化分析方法,以解决现有的问题。
4.本发明的一种基于普通克里金插值的臭氧传输变化分析方法采用如下技术方案:本发明一个实施例提供了一种基于普通克里金插值的臭氧传输变化分析方法,该方法包括以下步骤:采集臭氧浓度数据;将每个臭氧浓度数据作为笛卡尔坐标系中的一个数据点;对笛卡尔坐标系进行霍夫变换,获取霍夫空间中每个方向值的权重;根据霍夫空间中每个方向值的权重获取每个数据点的初始权重;将任意两个数据点作为一个数据点对,根据每个数据点对的距离和半方差绘制距离半方差图,将距离半方差图中的散点对应的数据点对中两个数据点的初始权重的乘积作为所述散点的第一散点值;根据第一散点值将所有散点分为多个散点类别,对每个散点类别中的每个散点,进行横坐标投影,得到每个散点类别的多个投影点;根据每个散点类别的所有投影点获取每个散点类别的分割点;将所有散点类别的分割点利用聚类的方法分成多个分割类别,获取每个分割类别的第一分割点和第二分割点; 根据每个分割类别的第一分割点和第二分割点获取每个分割类别的分组分割点;根据所有分组分割点的横坐标,将所有散点分成多个组;获取每个组的组代表点,包括:将一个组中的散点利用聚类的方法分为多个密度类别,根据每个散点所属的密度类别以及第一散点值获取每个散点的权重,对组中所有散点的横坐标进行加权求和,得到加权横坐标;对组中所有散点的纵坐标进行加权求和,得到
加权纵坐标;加权横坐标与加权纵坐标构成组代表点;对所有组代表点进行拟合,得到臭氧浓度数据分布模型,根据臭氧浓度数据分布模型进行插值获得臭氧图像;根据不同时刻的臭氧图像分析臭氧浓度变化情况。
5.优选的,所述获取霍夫空间中每个方向值的权重,包括的具体步骤如下:将霍夫空间中点的横坐标作为方向值,将霍夫空间中方向值相同的所有点的投票值的和作为方向值的投票值,将每个方向值的投票值除以所有方向值的投票值中最大的投票值,得到每个方向值的归一化投票值;将每个方向值的归一化投票值作为每个方向值的权重。
6.优选的,所述根据霍夫空间中每个方向值的权重获取每个数据点的初始权重,包括的具体步骤如下:将笛卡尔坐标系中一个数据点对应的霍夫空间中多个方向值的权重之和,作为数据点的权重;将每个数据点的权重除以所有数据点的权重中的最大值,将所得结果作为每个数据点的初始权重。
7.优选的,所述根据第一散点值将所有散点分为多个散点类别,包括的具体步骤如下:将所有的第一散点值按照从小到大的顺序进行排列,得到第一散点值序列;利用多阈值分割的方法将第一散点值序列中的第一散点值划分为不同类别,得到多个第一散点值类别;将每个第一散点值类别中所有第一散点值对应的所有散点划分为一个散点类别,最终得到多个散点类别。
8.优选的,所述根据每个散点类别的所有投影点获取每个散点类别的分割点,包括的具体步骤如下:将散点类别中所有散点的第一散点值的均值作为散点类别的类别散点值;将散点类别中所有投影点利用聚类的方法分成多个投影类别,获取每个投影类别中横坐标最小的投影点以及横坐标最大的投影点,作为每个投影类别的预分割点,获取所有投影类别的预分割点中除横坐标最小的预分割点以及横坐标最大的预分割点外的所有预分割点,作为散点类别的分割点;将散点类别的类别散点值作为分割点的分割值。
9.优选的,所述获取每个分割类别的第一分割点和第二分割点,包括的具体步骤如下:计算每个分割类别中所有分割点的横坐标的均值,将所得结果作为每个分割类别的中心点,获取所述中心点左侧相邻的分割点与右侧相邻的分割点,分别作为每个分割类别的第一分割点和第二分割点。
10.优选的,所述根据每个分割类别的第一分割点和第二分割点获取每个分割类别的分组分割点,包括的具体步骤如下:将每个分割类别中第一分割点的横坐标用表示,第二分割点的横坐标用表示,分组分割点的横坐标用表示,第一分割点的分割值用表示,第二分割点的分割值用表示;根据第一分割点的分割值与横坐标以及第二分割点的分割值与横坐标,获取分组分割点的横坐标的表达式为:
其中为分组分割点的横坐标;为第一分割点的横坐标;为第二分割点的横坐标;为第一分割点的分割值;为第二分割点的分割值;为最大值函数。
11.优选的,所述根据每个散点所属的密度类别以及第一散点值获取每个散点的权重,包括的具体步骤如下:将每个密度类别中元素数量与所有密度类别中元素数量的最大值的比值作为每个密度类别的密度值,将每个密度类别中每个散点的第一散点值与密度类别的密度值的乘积,作为每个密度类别中每个散点的第二散点值;将每个密度类别中每个散点的第二散点值作为每个散点的权重。
12.本发明的技术方案的有益效果是:本发明根据所有数据点的分布的方向来获取每个数据点的初始权重,结合数据点的初始权重为距离-半方差图中的散点赋予不同的第一散点值,并根据每个散点的第一散点值将所有散点分成多个散点类别,通过分析每个散点类别中散点的分布来获取多个分割点,使得获取的分割点考虑了不同方向上数据点的分布情况,将所有分割点分为多个分割类别,通过分析一个分割类别中所有分割点的中心值,并结合中心点两侧的分割点来获取分组分割点,在获取分组分割点时,更加关注中心点两侧分割值较大的分割点,而分割值的大小反映了对数据点所在方向的关注程度,使得获取的分组分割点结合了不同方向的数据点的分布信息,结果更加准确,进一步使得根据分组分割点对所有散点分组的结果更加准确;本发明通过密度聚类将每个组中的散点分为不同的密度类别,为不同的密度类别中的散点赋予不同的权重,使得在获取组代表点时更多的考虑密度大的区域的散点,从而使得获取的组代表点对组中数据代表性越高,进一步使得根据组代表点拟合的臭氧浓度数据分布模型更加精确,提高了利用臭氧数据分布模型进行插值的准确性,使得对臭氧浓度变化情况分析的结果更加准确。
附图说明
13.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
14.图1为本发明的一种基于普通克里金插值的臭氧传输变化分析方法的步骤流程图;图2为本发明的分组分割点获取过程示意图。
具体实施方式
15.为了更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种基于普通克里金插值的臭氧传输变化分析方法,其具体实施方式、结构、特征及其功效,详细说明如下。在下述说明中,不同的“一个实施例”或“另一个实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、
结构或特点可由任何合适形式组合。
16.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。
17.下面结合附图具体的说明本发明所提供的一种基于普通克里金插值的臭氧传输变化分析方法的具体方案。
18.请参阅图1,其示出了本发明一个实施例提供的一种基于普通克里金插值的臭氧传输变化分析方法的步骤流程图,该方法包括以下步骤:s001.采集臭氧浓度数据。
19.本实施例的目的是通过插值对臭氧的浓度分布变化进行分析,因此,首先通过不同区域的监测站点采集不同时刻每个区域的臭氧浓度数据。
20.由于检测站点位置是固定的,因此采集的一个区域的臭氧浓度数据的空间坐标是固定的,即每个臭氧浓度数据都包含经纬度坐标(空间坐标)、浓度值以及时刻信息。
21.本实施例对同一时刻的所有臭氧浓度数据进行分析。
22.s002.获取每个数据点的初始权重。
23.需要说明的是,目前分析臭氧传输变化时,往往是利用普通克里金插值方法对臭氧浓度数据进行插值,对插值之后的臭氧浓度数据进行分析。普通克里金插值方法通过构建距离-半方差图来拟合臭氧浓度数据分布模型,在拟合臭氧浓度数据分布模型的过程中对距离-半方差图中点进行分组采用的是等距离分组的方法,没有考虑不同方向的地势不同而导致不同方向的臭氧传输过程的不同。而本实施例的目的是结合臭氧浓度数据的方向性对后续获得的距离-半方差图中的散点进行分组,以提高后续插值的准确性,进而增加臭氧浓度数据分析结果的准确性。
24.在本实施例中,根据每个臭氧浓度数据的空间坐标,将所有臭氧浓度数据放到笛卡尔坐标系的第一象限中,每个臭氧浓度数据即可视为笛卡尔坐标系中的一个数据点。
25.将笛卡尔坐标系中所有数据点转换到霍夫空间中,霍夫空间中一个点表示笛卡尔坐标系中的一条直线,霍夫空间中点的投票值表示笛卡尔坐标系中对应直线上数据点的数量。霍夫空间中点的横坐标为方向值,表示该点在笛卡尔坐标系中对应直线的角度,即对应直线的方向。将霍夫空间中方向值相同的所有点的投票值相加作为该方向值的投票值,将每个方向值的投票值除以所有方向值的投票值中最大的投票值,得到每个方向值的归一化投票值。将每个方向值的归一化投票值作为该方向值的权重。
26.需要说明的是,笛卡尔坐标系中一个数据点可能位于霍夫空间中的多个点在笛卡尔坐标系中对应的多条直线上,此时笛卡尔坐标系中一个数据点对应霍夫空间中多个点,则进一步笛卡尔坐标系中一个数据点对应霍夫空间中多个方向值。
27.在本实施例中,获取笛卡尔坐标系中一个数据点对应的霍夫空间中多个方向值的权重之和,作为该数据点的权重。如此,获得了笛卡尔坐标系中所有数据点的权重。将每个数据点的权重除以所有数据点的权重中的最大值,实现每个数据点的权重的归一化,将归一化后的权重作为每个数据点的初始权重。
28.至此,获取了每个数据点的初始权重。
29.需要说明的是,本实施例根据所有数据点的分布的方向来获取每个数据点的初始权重,使得后续根据数据点的初始权重获取距离-半方差图中散点的第一散点值时,对于不
同方向的关注程度不同。使得结合第一散点值获取的每个组的组代表点更具有代表性,从而使得后续根据组代表点拟合的臭氧浓度数据分布模型更加准确,进一步使得后续对臭氧浓度变化分析的结果更加准确。
30.s003.绘制距离-半方差图,获取距离-半方差图中每个散点的第一散点值。
31.需要说明的是,普通克里金插值方法为先将所有数据点中任意两个数据点组成一个数据点对,根据每个数据点对中两个数据点的空间位置计算此两个数据点之间的距离作为每个数据点对的距离,根据每个数据点对中两个数据点的属性值(即本实施例中的臭氧浓度值)计算此两个数据点之间的半方差作为每个数据点对的半方差。根据每个数据点对的距离和半方差绘制距离-半方差图,通过对所有距离进行排序,并按照等距离将距离-半方差图中的点分成多个组,获取每个组的平均距离和平均半方差,根据每个组的平均距离和平均半方差拟合臭氧浓度数据分布模型。但普通克里金插值方法未考虑到不同方向的地势不同会导致不同方向的臭氧传输过程不同,采用等距离分组使得最终拟合得到的臭氧浓度数据分布模型误差较大。本实施例获取的数据点的初始权重反映了数据点分布的方向性,本实施例结合数据点的初始权重,为距离-半方差图中的点赋予不同的第一散点值,使得后续在对距离-半方差图中的点结合第一散点值进行分组时,对于不同方向的关注程度不同,进而使得最终拟合得到的臭氧浓度数据分布模型更加准确。
32.在本实施例中,绘制距离-半方差图,获取距离-半方差图中每个散点的第一散点值的过程如下:将任意两个数据点组成一个数据点对,计算每个数据点对的距离以及半方差,根据所有数据点对的距离以及半方差绘制距离-半方差图。将距离-半方差图中的点记为散点,则一个散点对应一个数据点对。
33.将一个散点对应的数据点对中两个数据点的初始权重的乘积作为该散点的第一散点值。
34.至此,获取了距离-半方差图中每个散点的第一散点值。
35.需要说明的是,本实施例结合数据点的初始权重,为距离-半方差图中的散点赋予不同的第一散点值,使得后续在对距离-半方差图中的散点结合第一散点值进行分组时,对于不同方向的关注程度不同,进而使得最终拟合得到的臭氧浓度数据分布模型更加准确。
36.s004.根据第一散点值对所有散点进行分类,获取每个散点类别的分割点。
37.统计得到所有的第一散点值,将所有的第一散点值按照从小到大的顺序进行排列,得到第一散点值序列。通过otsu多阈值分割的方法将第一散点值序列中的第一散点值划分为不同类别,得到多个第一散点值类别。将每个第一散点值类别中所有第一散点值对应的所有散点划分为一个散点类别,如此可得到多个散点类别。同一散点类别内的散点的第一散点值相近,不同散点类别内的散点的第一散点值相差较大。
38.将每个散点类别中所有散点的第一散点值的均值作为该散点类别的类别散点值。
39.对于一个散点类别中的每个散点,进行横坐标投影,得到该散点类别的多个投影点,需要说明的是,每个散点对应一个投影点。
40.对于一个散点类别中所有投影点,利用密度聚类的方法将一个散点类别中所有投影点分成多个投影类别,同一个投影类别中的密度较大,即投影点的位置相近。在本实施例中,采用的密度聚类的方法为dbscan密度聚类,在其他实施例中,实施人员可根据实际场景
选择密度聚类方法。
41.获取每个投影类别中横坐标最小的投影点以及横坐标最大的投影点,作为每个投影类别的预分割点,获取一个散点类别对应的所有投影类别的预分割点中除横坐标最小的预分割点以及横坐标最大的预分割点外的所有预分割点,作为该散点类别的分割点。
42.将每个散点类别的类别散点值作为每个散点类别的分割点的分割值。
43.至此,获取了每个散点类别的分割点以及分割点的分割值。
44.需要说明的是,本实施例根据每个散点的第一散点值将散点分成多个散点类别,通过分析每个散点类别中散点的分布来获取多个分割点,使得获取的分割点考虑了不同方向上数据点的分布情况,进而使得后续根据分割点获取的分组分割点结合了不同方向的数据点的分布信息,结果更加准确。
45.s005.根据所有分割点的分割值获取分组分割点。
46.对于所有散点类别的分割点,利用密度聚类的方法将所有散点类别的分割点分成多个分割类别,同一个分割类别中分割点的距离相近。在本实施例中,采用的密度聚类的方法为dbscan密度聚类,在其他实施例中,实施人员可根据实际场景选择密度聚类方法。
47.根据一个分割类别中分割点的分布获取一个分组分割点,具体方法为:首先计算一个分割类别中所有分割点的横坐标的均值,将该均值作为中心点,获取中心点左侧相邻的分割点与右侧相邻的分割点,并分别记为第一分割点与第二分割点。
48.将第一分割点的横坐标用表示,第二分割点的横坐标用表示,分组分割点的横坐标用表示,第一分割点的分割值用表示,第二分割点的分割值用表示。根据第一分割点的分割值与横坐标以及第二分割点的分割值与横坐标,获取分组分割点的横坐标:其中为分组分割点的横坐标;为第一分割点的横坐标;为第二分割点的横坐标;为第一分割点的分割值;为第二分割点的分割值;为最大值函数,表示获取中的最大值。
49.获取分组分割点的过程如图2所示:图2中的(1)表示三个散点类别的分割点,每个分割点上的数字表示每个分割点的分割值;图2中的(2)表示所有散点类别的分割点,通过密度聚类将所有散点类别的分割点分成了两个分割类别和;图2中的(3)表示根据分割类别 获取一个分组分割点,图2中的(3)中为第一分割点,为第二分割点,为中心点,为分组分割点。
50.同理,根据每个分割类别中分割点的分布都获取一个分组分割点,最终得到多个分组分割点。
51.至此,获取了分组分割点。
52.需要说明的是,本实施例结合分割点的分布,将分割点分为多个分割类别,通过分析一个分割类别中所有分割点的中心值,并结合中心点两侧的分割点来获取分组分割点,
在获取分组分割点时,更加关注中心点两侧分割值较大的分割点,而分割值的大小反映了对数据点所在方向的关注程度,使得获取的分组分割点结合了不同方向的数据点的分布信息,结果更加准确,进一步使得后续根据分组分割点对所有散点分组的结果更加准确。
53.s006.根据分组分割点对所有散点进行分组,获取每个组的组代表点。
54.根据分组分割点的横坐标,将所有散点分成多个组。
55.需要说明的是,每个组中包含多个散点,为拟合臭氧浓度数据分布模型,还需获取每个组的组代表点。距离-半方差图中,密度越大的区域的散点对应情况的发生概率越大,则应该为其赋予越大的权重,在获取组代表点时更多的考虑密度越大的区域的散点。
56.在本实施例中,获取每个组的组代表点的过程如下:对于一个组中的所有散点,利用密度聚类的方法将一个组中的所有散点分为多个密度类别,将每个密度类别中元素数量与所有密度类别中元素数量的最大值的比值作为每个密度类别的密度值。将每个密度类别的密度值乘以该密度类别中每个散点的第一散点值,并将所得结果作为该密度类别中每个散点的第二散点值。在本实施例中,采用的密度聚类的方法为dbscan密度聚类,在其他实施例中,实施人员可根据实际场景选择密度聚类方法。
57.将一个组中每个密度类别中每个散点的第二散点值作为每个散点的权重,对该组中所有散点的横坐标进行加权求和,得到加权横坐标。同理,对该组中所有散点的纵坐标进行加权求和,得到加权纵坐标。加权横坐标与加权纵坐标构成一个点,将其作为该组的组代表点。同理,获取每个组的组代表点。
58.至此,获取了每个组的组代表点。
59.需要说明的是,本实施例通过密度聚类,将每个组中的散点分为了不同的密度类别,为不同的密度类别中的散点赋予不同的权重,使得在获取组代表点时更多的考虑密度大的区域的散点,从而使得获取的组代表点对组中数据代表性越高,进一步使得后续根据组代表点拟合的臭氧浓度数据分布模型更加精确,提高了利用臭氧数据分布模型进行插值的准确性,有助于得到有效的插值数据用于臭氧浓度变化情况分析。
60.s007.根据组代表点拟合臭氧数据分布模型,获取臭氧图像,进行臭氧浓度变化分析。
61.通过最小二乘法对多个组代表点进行拟合,将得到距离和半方差的拟合关系作为臭氧浓度数据分布模型。根据臭氧浓度数据分布模型利用现有的插值方法进行插值,得到插值数据,形成臭氧图像。
62.需要说明的是,臭氧图像为根据一个时刻的臭氧浓度数据得到的。同理,对每个时刻的臭氧浓度数据进行插值,得到每个时刻的臭氧图像。
63.利用差分计算的方法获取相邻时刻的臭氧图像的差分图像。需要说明的是,相邻时刻的臭氧图像的差分图像,指的是前一时刻的臭氧图像减去后一时刻的臭氧图像,差分方法采用保留像素点差值的绝对值的方法。
64.差分图像反映了相邻时刻不同区域臭氧浓度变化的情况,对于臭氧浓度变换的区域采取对应措施,如派遣人员前往查看,分析臭氧浓度变化的原因等。
65.通过以上步骤,完成了臭氧浓度变化分析。
66.本发明实施例根据所有数据点的分布的方向来获取每个数据点的初始权重,结合
数据点的初始权重为距离-半方差图中的散点赋予不同的第一散点值,并根据每个散点的第一散点值将所有散点分成多个散点类别,通过分析每个散点类别中散点的分布来获取多个分割点,使得获取的分割点考虑了不同方向上数据点的分布情况,将所有分割点分为多个分割类别,通过分析一个分割类别中所有分割点的中心值,并结合中心点两侧的分割点来获取分组分割点,在获取分组分割点时,更加关注中心点两侧分割值较大的分割点,而分割值的大小反映了对数据点所在方向的关注程度,使得获取的分组分割点结合了不同方向的数据点的分布信息,结果更加准确,进一步使得根据分组分割点对所有散点分组的结果更加准确;本发明实施例通过密度聚类将每个组中的散点分为不同的密度类别,为不同的密度类别中的散点赋予不同的权重,使得在获取组代表点时更多的考虑密度大的区域的散点,从而使得获取的组代表点对组中数据代表性越高,进一步使得根据组代表点拟合的臭氧浓度数据分布模型更加精确,提高了利用臭氧数据分布模型进行插值的准确性,使得对臭氧浓度变化情况分析的结果更加准确。
67.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

技术特征:


1.一种基于普通克里金插值的臭氧传输变化分析方法,其特征在于,该方法包括以下步骤:采集臭氧浓度数据;将每个臭氧浓度数据作为笛卡尔坐标系中的一个数据点;对笛卡尔坐标系进行霍夫变换,获取霍夫空间中每个方向值的权重;根据霍夫空间中每个方向值的权重获取每个数据点的初始权重;将任意两个数据点作为一个数据点对,根据每个数据点对的距离和半方差绘制距离半方差图,将距离半方差图中的散点对应的数据点对中两个数据点的初始权重的乘积作为所述散点的第一散点值;根据第一散点值将所有散点分为多个散点类别,对每个散点类别中的每个散点,进行横坐标投影,得到每个散点类别的多个投影点;根据每个散点类别的所有投影点获取每个散点类别的分割点;将所有散点类别的分割点利用聚类的方法分成多个分割类别,获取每个分割类别的第一分割点和第二分割点;根据每个分割类别的第一分割点和第二分割点获取每个分割类别的分组分割点;根据所有分组分割点的横坐标,将所有散点分成多个组;获取每个组的组代表点,包括:将一个组中的散点利用聚类的方法分为多个密度类别,根据每个散点所属的密度类别以及第一散点值获取每个散点的权重,对组中所有散点的横坐标进行加权求和,得到加权横坐标;对组中所有散点的纵坐标进行加权求和,得到加权纵坐标;加权横坐标与加权纵坐标构成组代表点;对所有组代表点进行拟合,得到臭氧浓度数据分布模型,根据臭氧浓度数据分布模型进行插值获得臭氧图像;根据不同时刻的臭氧图像分析臭氧浓度变化情况。2.根据权利要求1所述的一种基于普通克里金插值的臭氧传输变化分析方法,其特征在于,所述获取霍夫空间中每个方向值的权重,包括的具体步骤如下:将霍夫空间中点的横坐标作为方向值,将霍夫空间中方向值相同的所有点的投票值的和作为方向值的投票值,将每个方向值的投票值除以所有方向值的投票值中最大的投票值,得到每个方向值的归一化投票值;将每个方向值的归一化投票值作为每个方向值的权重。3.根据权利要求1所述的一种基于普通克里金插值的臭氧传输变化分析方法,其特征在于,所述根据霍夫空间中每个方向值的权重获取每个数据点的初始权重,包括的具体步骤如下:将笛卡尔坐标系中一个数据点对应的霍夫空间中多个方向值的权重之和,作为数据点的权重;将每个数据点的权重除以所有数据点的权重中的最大值,将所得结果作为每个数据点的初始权重。4.根据权利要求1所述的一种基于普通克里金插值的臭氧传输变化分析方法,其特征在于,所述根据第一散点值将所有散点分为多个散点类别,包括的具体步骤如下:将所有的第一散点值按照从小到大的顺序进行排列,得到第一散点值序列;利用多阈值分割的方法将第一散点值序列中的第一散点值划分为不同类别,得到多个第一散点值类别;将每个第一散点值类别中所有第一散点值对应的所有散点划分为一个散点类别,最终得到多个散点类别。5.根据权利要求1所述的一种基于普通克里金插值的臭氧传输变化分析方法,其特征
在于,所述根据每个散点类别的所有投影点获取每个散点类别的分割点,包括的具体步骤如下:将散点类别中所有散点的第一散点值的均值作为散点类别的类别散点值;将散点类别中所有投影点利用聚类的方法分成多个投影类别,获取每个投影类别中横坐标最小的投影点以及横坐标最大的投影点,作为每个投影类别的预分割点,获取所有投影类别的预分割点中除横坐标最小的预分割点以及横坐标最大的预分割点外的所有预分割点,作为散点类别的分割点;将散点类别的类别散点值作为分割点的分割值。6.根据权利要求1所述的一种基于普通克里金插值的臭氧传输变化分析方法,其特征在于,所述获取每个分割类别的第一分割点和第二分割点,包括的具体步骤如下:计算每个分割类别中所有分割点的横坐标的均值,将所得结果作为每个分割类别的中心点,获取所述中心点左侧相邻的分割点与右侧相邻的分割点,分别作为每个分割类别的第一分割点和第二分割点。7.根据权利要求1所述的一种基于普通克里金插值的臭氧传输变化分析方法,其特征在于,所述根据每个分割类别的第一分割点和第二分割点获取每个分割类别的分组分割点,包括的具体步骤如下:将每个分割类别中第一分割点的横坐标用表示,第二分割点的横坐标用表示,分组分割点的横坐标用表示,第一分割点的分割值用表示,第二分割点的分割值用表示;根据第一分割点的分割值与横坐标以及第二分割点的分割值与横坐标,获取分组分割点的横坐标的表达式为:其中为分组分割点的横坐标;为第一分割点的横坐标;为第二分割点的横坐标;为第一分割点的分割值;为第二分割点的分割值;为最大值函数。8.根据权利要求1所述的一种基于普通克里金插值的臭氧传输变化分析方法,其特征在于,所述根据每个散点所属的密度类别以及第一散点值获取每个散点的权重,包括的具体步骤如下:将每个密度类别中元素数量与所有密度类别中元素数量的最大值的比值作为每个密度类别的密度值,将每个密度类别中每个散点的第一散点值与密度类别的密度值的乘积,作为每个密度类别中每个散点的第二散点值;将每个密度类别中每个散点的第二散点值作为每个散点的权重。

技术总结


本发明涉及数据处理技术领域,具体涉及一种基于普通克里金插值的臭氧传输变化分析方法,包括:采集臭氧浓度数据,根据霍夫空间中方向值的权重获取臭氧浓度数据对应数据点的初始权重;根据数据点的初始权重获取距离半方差图中散点的第一散点值;获取多个散点类别,根据每个散点类别的投影点获取分割点;获取多个分割类别,根据每个分割类别的第一分割点和第二分割点获取分组分割点,将散点分为多个组;获取每个组的组代表点,对所有组代表点进行拟合,得到臭氧浓度数据分布模型,进一步得到臭氧图像,进行臭氧浓度变化情况分析。本发明拟合的臭氧数据分布模型更为准确,进一步使得对臭氧浓度变化分析的结果更加准确。臭氧浓度变化分析的结果更加准确。臭氧浓度变化分析的结果更加准确。


技术研发人员:

赵媛 汪博炜

受保护的技术使用者:

广东中浦科技有限公司

技术研发日:

2022.12.21

技术公布日:

2023/1/19


文章投稿或转载声明

本文链接:http://www.wtabcd.cn/zhuanli/patent-1-84791-0.html

来源:专利查询检索下载-实用文体写作网版权所有,转载请保留出处。本站文章发布于 2023-01-28 14:46:52

发表评论

验证码:
用户名: 密码: 匿名发表
评论列表 (有 条评论
2人围观
参与讨论