一种风机叶片故障预警方法、系统、设备及介质与流程
1.本发明涉及故障预警的技术领域,尤其涉及到一种风机叶片故障预警方法、系统、设备及介质。
背景技术:
2.叶片是风电机组获取风能的关键部件。由于长期运行在严酷的自然环境中,承受各种复杂作用力,因此,极易发生砂眼、磨损、蒙皮脱落、裂纹、断裂等故障。
3.现有的叶片的故障诊断技术如振动检测技术,声发射检测技术,光栅光纤检测技术,电阻应变检测技术,超声波检测技术,红外热成像检测技术。但这些技术也各存在一定的不足。
4.振动检测与声发射检测需要在叶片上打孔安装传感器,不但会造成叶片原有结构的破坏,而且传感器的安装与后期维护较为困难,所需传感器较多。此外,由于受机舱内发动机、传动链振动等影响,采集的振动信号与声发射信号中易包含多种复杂多变的噪声,后期信号去噪处理等工作存在较大难度。光纤光栅检测与电阻应变片检测需要在叶片制造过程中在材料内部埋设光纤光栅传感器或在叶片表面粘贴传感器,难以实现传感器与叶片的一体化制造,传感器数量以及布放位置对监测结果影响较大,且接触式传感器自身存在局限性,长时间运行后传感器可能会出现掉落、失效、损坏等情况,在风机叶片运行过程中无法对传感器进行维护。超声波检测受检测人员的主观影响较大,还需要检测人员有丰富的叶片检测经验。此外,由于风机叶片不同部位所受弯矩和扭矩有差异性,蒙皮厚度沿叶展方向逐渐变化,在对叶片整体进行探伤时需要布置不同频率的超声波探头,且检测周期长,因此,超声波检测方法更适于叶片出厂前的静态检测。红外热成像检测对于比较深的损伤位置的检测灵敏度不高,且受环境因素的影响较大,对叶片进行实时健康监测有一定困难。
5.还有的是,上面所述的故障诊断技术最后只能得到有故障和无故障两个结果,若有故障,并不能体现出故障的程度。
技术实现要素:
6.本发明所要解决的技术问题在于,提供一种不会造成叶片原有结构的破坏、故障预警客观、非接触式、基于转动音频数据且能体现故障程度的风机叶片故障预警方法。
7.为了解决上述技术问题,本发明提供了一种风机叶片故障预警方法,包括:
8.设置包括有故障预警等级和故障占比对应的预警等级表;
9.采集风机叶片转动时的音频数据,包括正常样本和故障样本;
10.对采集到的风机叶片转动时的音频数据进行预处理;
11.对预处理后的风机叶片转动时的音频数据进行特征提取;
12.对提取到的特征进行降维优化;
13.构建故障分类器模型;
14.通过降维优化后的特征信息对故障分类器模型进行训练,得到训练好的故障分类
器模型;
15.采集需要进行故障预警的风机叶片的转动音频数据,并将该转动音频数据进行预处理、特征提取及降维优化后输入至训练好的故障分类器模型中,经故障分类器模型识别预测后,输出识别为故障的占比;
16.最后将识别为故障的占比与预警等级表对照,从而得出需要进行故障预警的风机叶片的故障预警等级。
17.进一步地,对采集到的风机叶片转动时的音频数据进行预处理包括:
18.对采集到的所有正常样本和故障样本进行滤波,过滤噪声;然后将每个样本切割为若干设定长度的数据段。
19.进一步地,对预处理后的风机叶片转动时的音频数据进行特征提取包括:
20.将离散的频域划分为若干个恒定带宽比的频带,假设fu为上限截止频率,fd为下限截止频率,fc为中心频率,频带划分规则如下:
21.fu=2nfd[0022][0023]
其中,n的倒数为频程倍数,分别计算每个频带内的功率谱,再转换为声压级,假设pj表示第j个频带上的能量,fj代表声信号的频谱幅值,则功率谱的计算方式为:
[0024][0025]
然后再转换为声压级,转换方法为:
[0026][0027]
其中p
ref
表示参考声压;
[0028]
将四个相邻的频带si、s
i+1
、s
i+2
、s
i+3
分为一组,以每组中前两个频段的声压级之和除以后两个频段的声压级之和作为倍频程能量比特征,具体计算公式为:
[0029][0030]
进一步地,对提取到的特征进行降维优化包括:
[0031]
1)利用高纬度特征矩阵xn×m作为输入,其中n为样本数,m为样本维数;
[0032]
2)对输入矩阵做pca降维处理,计算累计贡献率随主成分分量的变化关系;
[0033]
3)划定阈值,提取前k个主要成分作为最终降维后的特征向量,k《m。
[0034]
为了解决上述技术问题,本发明另外提供了一种风机叶片故障预警系统,用于实现上述风机叶片故障预警方法,其包括:
[0035]
预警等级表设置模块,用于设置包括有故障预警等级和故障占比对应的预警等级表;
[0036]
音频数据采集模块,用于采集风机叶片转动时的音频数据;
[0037]
预处理模块,用于对采集到的风机叶片转动时的音频数据进行预处理;
[0038]
特征提取模块,用于对预处理后的风机叶片转动时的音频数据进行特征提取;
[0039]
数据降维模块,用于对提取到的特征进行降维优化;
[0040]
模型构建模块,用于构建故障分类器模型;
[0041]
模型训练模块,用于训练故障分类器模型;
[0042]
识别模块,采用训练好的故障分类器模型进行故障占比识别;
[0043]
故障预警模块,结合预警等级表以及故障占比识别结果进行故障预警。
[0044]
进一步地,所述音频数据采集模块为拾音器。
[0045]
为了解决上述技术问题,本发明另外提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述的风机叶片故障预警方法的步骤。
[0046]
为了解决上述技术问题,本发明另外提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的风机叶片故障预警方法的步骤。
[0047]
实施本发明的有益效果在于:
[0048]
1、故障分类器模型依据风机运行时叶片转动的音频数据进行风机叶片故障占比识别,并将识别为故障的占比与预警等级表对照,从而得出需要进行故障预警的风机叶片的故障预警等级,保证了故障预警的客观性,又能体现出故障的程度。
[0049]
2、利用拾音器采集风机叶片转动时的音频数据,无需在叶片上打孔安装传感器,避免了破坏风机叶片原有结构,后期也不用进行维护。
[0050]
3、拾音器安装方式为非接触式,安装简单,检测效率高。
[0051]
4、兼容性高,可以应用于各种地形的风电场。
附图说明
[0052]
图1为本发明一种风机叶片故障预警方法的原理流程图;
[0053]
图2为声压级特征示意图;
[0054]
图3为pca主成分贡献率曲线图;
[0055]
图4为本发明一种风机叶片故障预警系统的连接框图。
具体实施方式
[0056]
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。仅此声明,本发明在文中出现或即将出现的上、下、左、右、前、后、内、外等方位用词,仅以本发明的附图为基准,其并不是对本发明的具体限定。
[0057]
如图1所示,本实施例提供了一种风机叶片故障预警方法,包括以下步骤:
[0058]
s1、设置包括有故障预警等级和故障占比对应的预警等级表;
[0059]
其中,
[0060]
故障占比为90%-100%时,预警等级为一级预警;
[0061]
故障占比为80%-90%时,预警等级为二级预警;
[0062]
故障占比为70%-80%时,预警等级为三级预警;
[0063]
故障占比为70%以下时,预警等级为四级预警;
[0064]
具体如下表1所示:
[0065]
故障占比90%~100%80%~90%70%~80%70%以下
预警等级一级预警二级预警三级预警低风险
[0066]
表1
[0067]
s2、采集两个不同风场(风场a和风场b)的机组叶片音频数据作为建模样本,包括正常样本和故障样本,每个样本为15min音频信号,其中正常样本和故障样本各占50%;样本数量如表2所示:
[0068][0069]
表2
[0070]
s3、对采集到的风机叶片转动时的音频数据进行预处理;
[0071]
由于风机工作在环境复杂多变的野外,因此采集到的声信号一般都包含大量噪声,如风声、雷声、变桨偏航噪声等,并且,风机在运行时会产生巨大的噪声,考虑到叶片早期故障能量较为微弱,极易掩盖在背景噪声中,因此,在特征提取之前需要对采集的声信号进行滤波处理,以提高信噪比;
[0072]
本实施例中,滤波器选择巴特沃斯带通滤波器;滤波器下限频率为200hz,上限频率为15khz;
[0073]
另外,考虑到其他背景噪声、偶发噪声等因素的影响,同一类数据中不同样本的特征间会存在一定的离散度,从而导致个别样本分类错误,为了进一步提高识别准确率和满足工程应用需求,滤波后,本实施例将每个样本切割为若干10s长度数据段;
[0074]
s4、对预处理后的风机叶片转动时的音频数据进行特征提取,具体包括:
[0075]
将离散的频域划分为若干个恒定带宽比的频带,假设fu为上限截止频率,fd为下限截止频率,fc为中心频率,频带划分规则如下:
[0076]fu
=2nfd[0077][0078]
其中,n的倒数为频程倍数,分别计算每个频带内的功率谱,再转换为声压级,假设pj表示第j个频带上的能量,fj代表声信号的频谱幅值,则功率谱的计算方式为:
[0079][0080]
然后再转换为声压级,转换方法为:
[0081][0082]
其中p
ref
表示参考声压,空气中通常取2
×
10-5
pa;
[0083]
将四个相邻的频带si、s
i+1
、s
i+2
、s
i+3
分为一组,以每组中前两个频段的声压级之和除以后两个频段的声压级之和作为倍频程能量比特征,具体计算公式为:
[0084][0085]
声压级特征如图2所示;
[0086]
s5、针对提取的特征,由于维度较高,不利于机器学习训练,因此,对提取到的特征进行降维优化,具体步骤包括:
[0087]
1)利用高纬度特征矩阵xn×m作为输入,其中n为样本数,m为样本维数;
[0088]
2)对输入矩阵做pca降维处理,计算累计贡献率随主成分分量的变化关系,具体如图3所示;
[0089]
3)划定阈值(选取的阈值为90%),提取前k个主要成分作为最终降维后的特征向量,k《m。
[0090]
s6、构建故障分类器模型;
[0091]
s7、通过降维优化后的特征信息对故障分类器模型进行训练(选取高斯核函数进行训练),得到训练好的故障分类器模型;
[0092]
s8、采集需要进行故障预警的风机叶片的转动音频数据,并将该转动音频数据进行预处理、特征提取及降维优化后输入至训练好的故障分类器模型中,经故障分类器模型识别预测后,输出识别为故障的占比;
[0093]
s9、最后将识别为故障的占比与预警等级表对照,从而得出需要进行故障预警的风机叶片的故障预警等级。
[0094]
如图4所示,本实施例另外提供一种风机叶片故障预警系统,用于实现上述的风机叶片故障预警方法,其包括:
[0095]
预警等级表设置模块,用于设置包括有故障预警等级和故障占比对应的预警等级表;
[0096]
音频数据采集模块,用于采集风机叶片转动时的音频数据;
[0097]
预处理模块,用于对采集到的风机叶片转动时的音频数据进行预处理;
[0098]
特征提取模块,用于对预处理后的风机叶片转动时的音频数据进行特征提取;
[0099]
数据降维模块,用于对提取到的特征进行降维优化;
[0100]
模型构建模块,用于构建故障分类器模型;
[0101]
模型训练模块,用于训练故障分类器模型;
[0102]
识别模块,采用训练好的故障分类器模型进行故障占比识别;
[0103]
故障预警模块,结合预警等级表以及故障占比识别结果进行故障预警。
[0104]
本实施例中,音频数据采集模块为拾音器。
[0105]
本实施例另外提供一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述的风机叶片故障预警方法的步骤。
[0106]
本实施例另外提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述的风机叶片故障预警方法的步骤。
[0107]
本实施例中,故障分类器模型依据风机运行时叶片转动的音频数据进行风机叶片故障占比识别,并将识别为故障的占比与预警等级表对照,从而得出需要进行故障预警的风机叶片的故障预警等级,保证了故障预警的客观性,又能体现出故障的程度。
[0108]
进一步地,利用拾音器采集风机叶片转动时的音频数据,无需在叶片上打孔安装传感器,避免了破坏风机叶片原有结构,后期也不用进行维护。
[0109]
还有的是,拾音器安装方式为非接触式,安装简单,检测效率高。
[0110]
最后,本实施例具有较高的兼容性,可以应用于各种地形的风电场。
[0111]
尽管本公开的描述已经相当详尽且特别对几个所述实施例进行了描述,但其并非旨在局限于任何这些细节或实施例或任何特殊实施例,而是应当将其视作是通过参考所附权利要求考虑到现有技术为这些权利要求提供广义的可能性解释,从而有效地涵盖本公开的预定范围。此外,上文以发明人可预见的实施例对本公开进行描述,其目的是为了提供有用的描述,而那些目前尚未预见的对本公开的非实质性改动仍可代表本公开的等效改动。
技术特征:
1.一种风机叶片故障预警方法,其特征在于,包括:设置包括有故障预警等级和故障占比对应的预警等级表;采集风机叶片转动时的音频数据,包括正常样本和故障样本;对采集到的风机叶片转动时的音频数据进行预处理;对预处理后的风机叶片转动时的音频数据进行特征提取;对提取到的特征进行降维优化;构建故障分类器模型;通过降维优化后的特征信息对故障分类器模型进行训练,得到训练好的故障分类器模型;采集需要进行故障预警的风机叶片的转动音频数据,并将该转动音频数据进行预处理、特征提取及降维优化后输入至训练好的故障分类器模型中,经故障分类器模型识别预测后,输出识别为故障的占比;最后将识别为故障的占比与预警等级表对照,从而得出需要进行故障预警的风机叶片的故障预警等级。2.根据权利要求1所述的一种风机叶片故障预警方法,其特征在于,对采集到的风机叶片转动时的音频数据进行预处理包括:对采集到的所有正常样本和故障样本进行滤波,过滤噪声;然后将每个样本切割为若干设定长度的数据段。3.根据权利要求1所述的一种风机叶片故障预警方法,其特征在于,对预处理后的风机叶片转动时的音频数据进行特征提取包括:将离散的频域划分为若干个恒定带宽比的频带,假设f
u
为上限截止频率,f
d
为下限截止频率,f
c
为中心频率,频带划分规则如下:f
u
=2
n
f
d
其中,n的倒数为频程倍数,分别计算每个频带内的功率谱,再转换为声压级,假设p
j
表示第j个频带上的能量,f
j
代表声信号的频谱幅值,则功率谱的计算方式为:然后再转换为声压级,转换方法为:其中p
ref
表示参考声压;将四个相邻的频带s
i
、s
i+1
、s
i+2
、s
i+3
分为一组,以每组中前两个频段的声压级之和除以后两个频段的声压级之和作为倍频程能量比特征,具体计算公式为:4.根据权利要求1所述的一种风机叶片故障预警方法,其特征在于,对提取到的特征进行降维优化包括:
1)利用高纬度特征矩阵x
n
×
m
作为输入,其中n为样本数,m为样本维数;2)对输入矩阵做pca降维处理,计算累计贡献率随主成分分量的变化关系;3)划定阈值,提取前k个主要成分作为最终降维后的特征向量,k<m。5.一种风机叶片故障预警系统,其特征在于,用于实现权利要求1-4任一所述的风机叶片故障预警方法,其包括:预警等级表设置模块,用于设置包括有故障预警等级和故障占比对应的预警等级表;音频数据采集模块,用于采集风机叶片转动时的音频数据;预处理模块,用于对采集到的风机叶片转动时的音频数据进行预处理;特征提取模块,用于对预处理后的风机叶片转动时的音频数据进行特征提取;数据降维模块,用于对提取到的特征进行降维优化;模型构建模块,用于构建故障分类器模型;模型训练模块,用于训练故障分类器模型;识别模块,采用训练好的故障分类器模型进行故障占比识别;故障预警模块,结合预警等级表以及故障占比识别结果进行故障预警。6.根据权利要求5所述的一种风机叶片故障预警系统,其特征在于,所述音频数据采集模块为拾音器。7.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至4中任一项所述的风机叶片故障预警方法的步骤。8.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至4中任一项所述的风机叶片故障预警方法的步骤。
技术总结
本发明公开了一种风机叶片故障预警方法、系统、设备及介质,方法包括:设置预警等级表;采集风机叶片转动时的音频数据;对采集到的风机叶片转动时的音频数据进行预处理;对预处理后的风机叶片转动时的音频数据进行特征提取;对提取到的特征进行降维优化;构建故障分类器模型;通过降维优化后的特征信息对故障分类器模型进行训练;采集需要进行故障预警的风机叶片的转动音频数据,并将该转动音频数据进行预处理、特征提取及降维优化后输入至训练好的故障分类器模型中,输出识别为故障的占比;将识别为故障的占比与预警等级表对照,从而得出需要进行故障预警的风机叶片的故障预警等级。本发明具有不会造成叶片原有结构的破坏、故障预警客观等优点。警客观等优点。警客观等优点。