一种表面局部凸起飞行器气动力智能优化控制方法与流程
1.本发明涉及一种表面局部凸起飞行器气动力智能优化控制方法,属于飞行器气动力建模技术领域。
背景技术:
2.飞行器一般是通过空气舵来控制姿态,但空气舵会限制飞行器气动性能提升。低速大攻角时,舵面效率会降低,高速时,舵面会增加阻力,并面临严酷的气动加热。随着对隐身性能需求提高,而舵面是雷达反射源,制约着隐身性能。由此,无舵面控制技术成为目前姿态控制的热点,是未来姿态控制的重要发展方向之一。
3.未来可通过智能材料在飞行器表面产生局部变形任意生成凸起,实时控制飞行器姿态,是一种新型的无舵面控制技术。凸起(如厘米量级半球形凸起)可以通过改变局部压力分布来改变气动力矩,从而实现控制飞行器姿态。实时根据飞行器飞行状态,得到需要凸起产生多大力矩,从而确定凸起位置。基于机器学习建立凸起的气动力模型,在此基础上,建立气动力优化控制方案。传统的优化方案响应慢,对于复杂模型鲁棒性差,并且输入模型为机器学习预测模型,较为复杂,传统优化方案难以解决。
技术实现要素:
4.本发明的目的在于克服现有技术的上述不足,提供了一种表面局部凸起飞行器气动力智能优化控制方法,针对在线优化任意给定气动力指标下的最优凸起位置耗时长、鲁棒性差的问题,该方法基于智能优化算法,建立任意给定气动力的智能优化控制方案。
5.本发明的技术解决方案是:
6.本发明公开了一种表面局部凸起飞行器气动力智能优化控制方法,包括:
7.s1、加载表面局部凸起飞行器气动力模型;
8.s2、根据优化指标判断优化类别;若判断优化类别为双通道控制模型,进入步骤s3,若判断优化类别为单通道无约束模型,进入步骤s4,若判断优化类别为单通道有约束模型,进入步骤s5;
9.s3、设置优化参数;依据所述气动力模型和优化参数,利用粒子算法求解双点控制的最优点坐标;进入步骤s8;
10.s4、设置优化参数;依据所述气动力模型和优化参数,利用蚁算法求解单点控制最优点坐标;进入步骤s6;
11.s5、设置优化参数;依据所述气动力模型和优化参数,利用物理模型求解单点控制最优点坐标;
12.s6、根据单点控制最优点坐标得到俯仰力矩或偏航力矩的取值范围;
13.s7、判断优化指标是否在取值范围内,如果是,采用蚁算法求解单点控制最优点坐标,如果不是,采用蚁算法求解双点控制最优点坐标;
14.s8、结束。
15.在上述飞行器气动力智能优化控制方法中,根据优化指标判断优化类别,具体步骤为:
16.(1)如果所述优化指标为一个通道的偏航力矩或俯仰力矩,所述优化类别为单通道无约束模型;
17.(2)如果所述优化指标为一个通道的偏航力矩或俯仰力矩,且另一个通道的优化指标为0,则所述优化类别为单通道有约束模型;
18.(3)如果所述优化指标为两个通道的偏航力矩和俯仰力矩,则所述优化类别为双通道控制模型。
19.在上述飞行器气动力智能优化控制方法中,所述设置优化参数,具体方法为:
20.(4)确定优化类别为单通道无约束模型,设置单通道无约束优化参数;
21.当约束参数为偏航力矩的优化指标时,单通道优化参数计算公式为:
22.minf(x)
23.s.t.dmyg=k1
24.其中,x为气动力模型坐标,f为轴向力,dmyg为偏航力矩,min为取最小值,k1为偏航力矩的优化指标;
25.当约束参数为俯仰力矩的优化指标时,单通道优化参数计算公式为:
26.minf(x)
27.s.t.dmzg=k2
28.其中,dmzg为俯仰力矩,k2为俯仰力矩的优化指标;
29.(5)确定优化类别为单通道有约束模型,设置单通道有约束优化参数;
30.当约束参数为偏航力矩的优化指标时,单通道优化参数计算公式为:
31.minf(x)
32.s.t.dmzg=k1
33.dmyg=0
34.当约束参数为俯仰力矩的优化指标时,单通道优化参数计算公式为:
35.minf(x)
36.s.t.dmzg=0
37.dmyg=k2
38.(6)确定优化类别为双通道模型,设置双通道优化参数;
39.所述设置双通道优化参数,方法为:
40.minf(x)
41.s.t.dmyg=k1
42.dmzg=k2
43.其中,f为轴向力,dmyg为偏航力矩,dmzg为俯仰力矩。
44.在上述飞行器气动力智能优化控制方法中,所述利用粒子算法求解双点控制的最优点坐标,具体方法为:
45.(1)初始化所述粒子的的初始坐标点、初始速度;
46.(2)根据所述气动力模型,计算初始坐标点的双点目标函数;
47.(3)根据所述初始坐标点的双点目标函数,选取初始时刻的局部最优点坐标和全
局最优点坐标;
48.(4)以此类推,根据t时刻的坐标点和速度,计算t+1时刻的坐标点和速度;其中,t=0
…
n,n为最大迭代次数;
49.(5)根据所述气动力模型,计算t+1时刻的坐标点的双点目标函数,根据双点目标函数选取t+1时刻的局部最优点坐标和全局最优点坐标;
50.(6)判断是否已达到最大迭代次数或全局最优点坐标的值不变,若是,则退出迭代,输出全局最优点坐标为双点控制的最优点坐标,否则返回步骤(4)。
51.在上述飞行器气动力智能优化控制方法中,所述利用蚁算法求解单点控制最优点坐标,具体步骤为:
52.(1)初始化转移概率、信息素挥发系数和初始时刻蚁坐标点;
53.(2)根据所述气动力模型,得到初始时刻蚁坐标点的单点目标函数;
54.(3)根据初始时刻蚁坐标点的单点目标函数,选取初始时刻的局部最优点坐标和全局最优点坐标;
55.(4)根据信息素挥发系数计算信息素,根据信息素计算转移概率;
56.(5)以此类推,根据t时刻蚁坐标点和转移概率计算t+1时刻的蚁坐标点;其中,t=0
…
n-1,n为最大迭代次数;
57.(6)根据所述气动力模型,计算t+1时刻的蚁坐标点的单点目标函数;
58.(7)根据t+1时刻的单点目标函数,选取t+1时刻的局部最优点坐标和全局最优点坐标;
59.(8)判断是否达到最大迭代次数或全局最优点坐标不变,若是,则输出全局最优点坐标为单点控制最优点坐标;否则,返回步骤(5)。
60.在上述飞行器气动力智能优化控制方法中,所述利用物理模型求解单点控制最优点坐标,具体方法为:
61.利用所述优化控制输入模型和飞行器的物理特性,在dmzg=0 的压心坐标附近区域进行网格点划分,通过逐点遍历以及压心附近俯仰力矩的变化趋势寻满足俯仰力矩小于给定误差小量e1的坐标点;
62.或:利用所述优化控制输入模型和飞行器的物理特性,在 dmyg=0的飞行器的对称轴处附近区域进行网格点划分,通过逐点遍历以及对称轴附近偏航力矩的变化趋势寻满足偏航力矩小于误差小量e2的坐标点;
63.根据坐标点,利用蚁算法求解单点控制最优点坐标。
64.在上述飞行器气动力智能优化控制方法中,所述根据单点控制最优点坐标得到俯仰力矩或偏航力矩的取值范围,具体方法为:
65.根据气动力模型,得到单点控制最优点坐标对应的俯仰力矩或偏航力矩,将该俯仰力矩或偏航力矩确定为所述取值范围的最大值,取值范围的最小值为0。
66.在上述飞行器气动力智能优化控制方法中,所述采用蚁算法求解双点控制最优点坐标,具体方法为:
67.(1)初始化转移概率、信息素挥发系数;
68.(2)根据所述气动力模型,得到随机指定的两个初始蚁坐标点的双点目标函数;
69.(3)根据所述双点目标函数,选取初始时刻的局部最优点坐标和全局最优点坐标;
70.(4)根据信息素挥发系数计算信息素,根据信息素计算转移概率;
71.(5)以此类推,根据t时刻蚁坐标点和转移概率计算t+1时刻的蚁坐标点;其中,t=0
…
n-1,n为最大迭代次数;
72.(6)根据所述气动力模型,计算t+1时刻的蚁坐标点的双点目标函数;
73.(7)根据t+1时刻的双点目标函数,选取t+1时刻的局部最优点坐标和全局最优点坐标;
74.(8)判断是否达到最大迭代次数或全局最优点坐标不变,若是,则输出全局最优点坐标为单点控制最优点坐标;否则,返回步骤(5)。
75.在上述飞行器气动力智能优化控制方法中,所述双点目标函数为:
[0076][0077]
式中,t(x)为双点目标函数,f(xi)为xi坐标点的轴向力,σ为惩罚因子,li为归一化系数,pi为惩罚函数,xi为气动力模型的坐标点;
[0078]
归一化系数,公式为:
[0079][0080]
式中,li为归一化系数,pi为惩罚函数;
[0081]
偏航力矩的惩罚函数,公式为:
[0082][0083]
其中,dmyg为偏航力矩,k1为偏航力矩的优化指标,e1为偏航力矩的误差小量;
[0084]
俯仰力矩的惩罚函数,公式为:
[0085][0086]
其中,dmzg为俯仰力矩,k2为俯仰力矩的优化指标,e2为俯仰力矩的误差小量。
[0087]
在上述飞行器气动力智能优化控制方法中,所述局部最优点坐标和全局最优点坐标,计算公式为:
[0088]
局部最优点坐标,公式为:
[0089]
pbestk=argmin(t(xi))
[0090]
其中,i为粒子序号,i=1,2,
…
m,m为粒子规模, argmin(t(xi))为使目标函数t(xi)取最小值时的变量xi的值;
[0091]
全局最优点坐标,公式为:
[0092]
gbest=argmin(gbest,pbestk)
[0093]
其中,argmin(gbest,pbestk)为取gbest、pbestk二者中的较小值。
[0094]
在上述飞行器气动力智能优化控制方法中,所述计算t+1时刻气动力模型的坐标点和速度,公式为:
[0095][0096][0097]
其中,ω为收敛参数,c1,c2为学习因子,r1,r2为两个0~1之间的随机数;xi为第i个粒子坐标点,为第k个粒子第t次迭代的坐标点,为第k个粒子第t次迭代的迭代速度;pbestk为当前粒子的局部最优点坐标,gbest为全局最优点坐标。
[0098]
在上述飞行器气动力智能优化控制方法中,根据信息素挥发系数计算信息素,根据信息素计算转移概率,具体方法为:
[0099]
所述信息素,计算公式为:
[0100][0101]
其中,τ
ij
为i与j之间的信息素,ρ为信息素挥发系数,为信息素增量,q为常数,lk为当前蚂蚁走过的路径长度。
[0102]
所述转移概率,计算公式为:
[0103][0104]
其中,α,β为重要程度因子,τ
ij
(t)为i与j之间的信息素,η
ij
=1/d
ij
,d
ij
为i和j之间的距离;
[0105][0106]
其中,x为坐标点。
[0107]
在上述飞行器气动力智能优化控制方法中,所述单点目标函数,公式为:
[0108][0109]
式中,t(x)为加入惩罚函数的单点目标函数,f(x)为x坐标点的轴向力,σ为惩罚因子,li为归一化系数,pi为惩罚函数,x为气动力模型的坐标点。
[0110]
在上述飞行器气动力智能优化控制方法中,根据t时刻蚁坐标点和转移概率计算t+1时刻的蚁坐标点,具体方法为:
[0111][0112]
其中,x(t)为t时刻坐标,x(t+1)为t+1时刻坐标,step为给定步长,i为当前的迭代次数。
[0113]
本发明与现有技术的有益效果在于:
[0114]
1)本发明采用智能优化算法蚁算法(aco)和粒子算法(pso) 作为优化算法,相比于传统优化控制方法,计算效率高,鲁棒性好,精度高,对于基于机器学习得到的复杂模型,智能优化算法更易实现。
[0115]
2)本发明可以加载导入不同类别的气动力模型,随着模型的更新,可以获得不同的优化方案,提升了优化控制的灵活性。
[0116]
3)本发明采用智能优化算法对于复杂模型的优化控制更能解决模型的复杂度问题,算法具有更高的精度和可扩展性,为后续的优化奠定基础。
附图说明
[0117]
图1为本发明气动力智能优化控制方法流程图;
[0118]
图2为本发明约束俯仰力矩下偏航力矩控制区域示意图;
[0119]
图3为本发明约束偏航力矩下俯仰力矩控制区域示意图。
具体实施方式
[0120]
下面结合附图及具体实施方式对本发明专利做进一步详细说明。
[0121]
如图1所示,本发明公开了一种表面局部凸起飞行器气动力智能优化控制方法,包括:
[0122]
本发明公开了一种表面局部凸起飞行器气动力智能优化控制方法,包括:
[0123]
步骤1、加载表面局部凸起飞行器气动力模型;
[0124]
步骤2、根据优化指标判断优化类别;若判断优化类别为双通道控制模型,进入步骤3,若判断优化类别为单通道无约束模型,进入步骤4,若判断优化类别为单通道有约束模型,进入步骤5;
[0125]
步骤3、设置优化参数;依据气动力模型和优化参数,利用粒子算法求解双点控制的最优点坐标;进入步骤8;
[0126]
步骤4、设置优化参数;依据气动力模型和优化参数,利用蚁算法求解单点控制最优点坐标;进入步骤6;
[0127]
步骤5、设置优化参数;依据气动力模型和优化参数,利用物理模型求解单点控制最优点坐标;
[0128]
步骤6、根据单点控制最优点坐标得到俯仰力矩或偏航力矩的取值范围;
[0129]
步骤7、判断优化指标是否在取值范围内,如果是,采用蚁算法求解单点控制最优点坐标,如果不是,采用蚁算法求解双点控制最优点坐标;
[0130]
步骤8、结束。
[0131]
根据优化指标判断优化类别,具体步骤为:
[0132]
(1)如果优化指标为一个通道的偏航力矩或俯仰力矩,优化类别为单通道无约束模型;
[0133]
(2)如果优化指标为一个通道的偏航力矩或俯仰力矩,且另一个通道的优化指标为0,则优化类别为单通道有约束模型;
[0134]
(3)如果优化指标为两个通道的偏航力矩和俯仰力矩,则优化类别为双通道控制
模型。
[0135]
根据优化类别设置优化参数,具体方法为:
[0136]
(7)确定优化类别为单通道无约束模型,设置单通道无约束优化参数;
[0137]
当约束参数为偏航力矩的优化指标时,单通道优化参数计算公式为:
[0138]
min f(x)
[0139]
s.t.dmyg=k1
[0140]
其中,x为气动力模型坐标,f为轴向力,dmyg为偏航力矩, min为取最小值,k1为偏航力矩的优化指标;
[0141]
当约束参数为俯仰力矩的优化指标时,单通道优化参数计算公式为:
[0142]
min f(x)
[0143]
s.t.dmzg=k2
[0144]
其中,dmzg为俯仰力矩,k2为俯仰力矩的优化指标;
[0145]
(8)确定优化类别为单通道有约束模型,设置单通道有约束优化参数;
[0146]
当约束参数为偏航力矩的优化指标时,单通道优化参数计算公式为:
[0147]
min f(x)
[0148]
s.t.dmzg=k1
[0149]
dmyg=0
[0150]
当约束参数为俯仰力矩的优化指标时,单通道优化参数计算公式为:
[0151]
min f(x)
[0152]
s.t.dmzg=0
[0153]
dmyg=k2
[0154]
(9)确定优化类别为双通道模型,设置双通道优化参数;
[0155]
设置双通道优化参数,方法为:
[0156]
min f(x)
[0157]
s.t.dmyg=k1
[0158]
dmzg=k
[0159]
其中,f为轴向力,dmyg为偏航力矩,dmzg为俯仰力矩。
[0160]
利用粒子算法求解双点控制的最优点坐标,具体方法为:
[0161]
(1)初始化粒子的的初始坐标点、初始速度;
[0162]
(2)根据气动力模型,计算初始坐标点的双点目标函数;
[0163]
(3)根据初始坐标点的双点目标函数,选取初始时刻的局部最优点坐标和全局最优点坐标;
[0164]
(4)以此类推,根据t时刻的坐标点和速度,计算t+1时刻的坐标点和速度;其中,t=0
…
n,n为最大迭代次数;
[0165]
(5)根据气动力模型,计算t+1时刻的坐标点的双点目标函数,根据双点目标函数选取t+1时刻的局部最优点坐标和全局最优点坐标;
[0166]
(6)判断是否已达到最大迭代次数或全局最优点坐标的值不变,若是,则退出迭代,输出全局最优点坐标为双点控制的最优点坐标,否则返回步骤(4)。
[0167]
利用蚁算法求解单点控制最优点坐标,具体步骤为:
[0168]
(1)初始化转移概率、信息素挥发系数和初始时刻蚁坐标点;
[0169]
(2)根据气动力模型,得到初始时刻蚁坐标点的单点目标函数;
[0170]
(3)根据初始时刻蚁坐标点的单点目标函数,选取初始时刻的局部最优点坐标和全局最优点坐标;
[0171]
(4)根据信息素挥发系数计算信息素,根据信息素计算转移概率;
[0172]
(5)以此类推,根据t时刻蚁坐标点和转移概率计算t+1时刻的蚁坐标点;其中,t=0
…
n-1,n为最大迭代次数;
[0173]
(6)根据气动力模型,计算t+1时刻的蚁坐标点的单点目标函数;
[0174]
(7)根据t+1时刻的单点目标函数,选取t+1时刻的局部最优点坐标和全局最优点坐标;
[0175]
(8)判断是否达到最大迭代次数或全局最优点坐标不变,若是,则输出全局最优点坐标为单点控制最优点坐标;否则,返回步骤(5)。
[0176]
利用物理模型求解单点控制最优点坐标,具体方法为:
[0177]
利用优化控制输入模型和飞行器的物理特性,在dmzg=0的压心坐标附近区域进行网格点划分,通过逐点遍历以及压心附近俯仰力矩的变化趋势寻满足俯仰力矩小于给定误差小量e1的坐标点;
[0178]
或:利用优化控制输入模型和飞行器的物理特性,在dmyg=0的飞行器的对称轴处附近区域进行网格点划分,通过逐点遍历以及对称轴附近偏航力矩的变化趋势寻满足偏航力矩小于误差小量e2的坐标点;
[0179]
根据坐标点,利用蚁算法求解单点控制最优点坐标。
[0180]
根据单点控制最优点坐标得到俯仰力矩或偏航力矩的取值范围,具体方法为:
[0181]
根据气动力模型,得到单点控制最优点坐标对应的俯仰力矩或偏航力矩,将该俯仰力矩或偏航力矩确定为取值范围的最大值,取值范围的最小值为0。
[0182]
采用蚁算法求解双点控制最优点坐标,具体方法为:
[0183]
(1)初始化转移概率、信息素挥发系数;
[0184]
(2)根据气动力模型,得到随机指定的两个初始蚁坐标点的双点目标函数;
[0185]
(3)根据双点目标函数,选取初始时刻的局部最优点坐标和全局最优点坐标;
[0186]
(4)根据信息素挥发系数计算信息素,根据信息素计算转移概率;
[0187]
(5)以此类推,根据t时刻蚁坐标点和转移概率计算t+1时刻的蚁坐标点;其中,t=0
…
n-1,n为最大迭代次数;
[0188]
(6)根据气动力模型,计算t+1时刻的蚁坐标点的双点目标函数;
[0189]
(7)根据t+1时刻的双点目标函数,选取t+1时刻的局部最优点坐标和全局最优点坐标;
[0190]
(8)判断是否达到最大迭代次数或全局最优点坐标不变,若是,则输出全局最优点坐标为单点控制最优点坐标;否则,返回步骤(5)。
[0191]
双点目标函数为:
[0192]
[0193]
式中,t(x)为双点目标函数,f(xi)为xi坐标点的轴向力,σ为惩罚因子,li为归一化系数,pi为惩罚函数,xi为气动力模型的坐标点;
[0194]
归一化系数,公式为:
[0195][0196]
式中,li为归一化系数,pi为惩罚函数;
[0197]
偏航力矩的惩罚函数,公式为:
[0198][0199]
其中,dmyg为偏航力矩,k1为偏航力矩的优化指标,e1为偏航力矩的误差小量;
[0200]
俯仰力矩的惩罚函数,公式为:
[0201][0202]
其中,dmzg为俯仰力矩,k2为俯仰力矩的优化指标,e2为俯仰力矩的误差小量。
[0203]
局部最优点坐标和全局最优点坐标,计算公式为:
[0204]
局部最优点坐标,公式为:
[0205]
pbestk=argmin(t(xi))
[0206]
其中,i为粒子序号,i=1,2,
…
m,m为粒子规模, argmin(t(xi))为使目标函数t(xi)取最小值时的变量xi的值;
[0207]
全局最优点坐标,公式为:
[0208]
gbest=argmin(gbest,pbestk)
[0209]
其中,argmin(gbest,pbestk)为取gbest、pbestk二者中的较小值。
[0210]
计算t+1时刻气动力模型的坐标点和速度,公式为:
[0211][0212][0213]
其中,ω为收敛参数,c1,c2为学习因子,r1,r2为两个0~1之间的随机数;xi为第i个粒子坐标点,为第k个粒子第t次迭代的坐标点,为第k个粒子第t次迭代的迭代速度;pbestk为当前粒子的局部最优点坐标,gbest为全局最优点坐标。
[0214]
根据信息素挥发系数计算信息素,根据信息素计算转移概率,具体方法为:
[0215]
信息素,计算公式为:
[0216][0217]
其中,τ
ij
为i与j之间的信息素,ρ为信息素挥发系数,为信息素增量,
q为常数,lk为当前蚂蚁走过的路径长度。
[0218]
转移概率,计算公式为:
[0219][0220]
其中,α,β为重要程度因子,τ
ij
(t)为i与j之间的信息素,η
ij
=1/d
ij
,d
ij
为i和j之间的距离;
[0221][0222]
其中,x为坐标点。
[0223]
单点目标函数,公式为:
[0224][0225]
式中,t(x)为加入惩罚函数的单点目标函数,f(x)为x坐标点的轴向力,σ为惩罚因子,li为归一化系数,pi为惩罚函数,x为气动力模型的坐标点。
[0226]
根据t时刻蚁坐标点和转移概率计算t+1时刻的蚁坐标点,具体方法为:
[0227][0228]
其中,x(t)为t时刻坐标,x(t+1)为t+1时刻坐标,step为给定步长,i为当前的迭代次数。
[0229]
实施例1
[0230]
单通道无约束:利用蚁算法(aco)为求解偏航力矩dmyg和俯仰力矩dmzg的取值范围,进而选取优化方案。蚁算法部分参数选择为,蚂蚁规模20,迭代次数20,信息素挥发系数0.9,转移概率为0.2,最终得到偏航力矩dmyg和俯仰力矩dmzg的取值范围和坐标,如下:
[0231]
paraminmin_posmaxmax_posdmyg0.225[3548.583,261.140]213.37[1201.475,405.011]dmzg563.9[1202.145,176.645]135.932[2808.880,603.327]
[0232]
根据求解得到的取值范围,可以给出优化方案的选择,给定一些示例及其结果,并计算其优化响应时间,如下:
[0233][0234][0235]
单通道有约束:给定偏航力矩dmyg和俯仰力矩dmzg的阈值,认为当偏航力矩dmyg绝对值小于1和俯仰力矩dmzg绝对值小于5时,对应力矩无控制作用。根据物理模型分析,质心大约在x=2250处,此时dmzg≈0,因此在质心附近进行寻优,建立偏航力矩有约束单通道控制的区域并求解其取值范围。在z=0附近,dmyg≈0,认为此时的优化不影响偏航力矩,因此在中心附近建立俯仰力矩单通道有约束控制区域并求解其取值范围。
[0236]
利用网格构建细分单通道控制区域,调用输入模型计算可一进行单通道控制的飞行器区域,并根据曲线拟合得到其边界,如图2、图 3所示。
[0237]
在求解出区域的基础上,在对应区域内求解单通道控制的最值,是选择有约束单通道控制优化方案的依据,即判断单通道控制或多点控制。利用蚁算法进行区域内的最值寻优,得到的结果如下:
[0238]
paraminmaxdmyg10.295130.6221429dmzg-340.4341.465
[0239]
当选取有约束的单通道优化问题时,需要将指标与最值比较,判断单通道控制是否可以达到指标,如果无法达到,采用双点控制。
[0240]
双通道控制:利用粒子算法(pso)求解可以利用单通道进行双通道控制的偏航
力矩dmyg和俯仰力矩dmzg的取值范围,进而判断对于双通道控制的优化方案。
[0241]
给定一定工况,求解结果和误差如下:
[0242][0243][0244]
根据结果和误差可得,除去个别情况,误差可以控制在10%以内,因此,粒子算法可以寻到双通道控制的最优坐标,在满足俯仰力矩和偏航力矩两个指标的前提下,使得轴向力之和最小,达到控制需求。
[0245]
以上对本发明的飞行器表面局部凸起的气动力智能优化控制方法进行了详细介绍。本文中应用了具体案例对本发明的原理及实施方式进行了阐述,以上具体案例说明只是用于帮助理解本发明的方法及其核心思想。应当指出,凡是在不脱离本发明技术实质的前提下对以上实例所做的任何简单修改均属于本发明的技术范围。
[0246]
发明未详细描述内容为本领域技术人员公知技术。