大学生电脑主页————大学生的百事通
2003年浙江省大学生高等数学竞赛试题(2003.12.6)
【本文由大学生电脑主页[]—大学
生的百事通收集整理】
一.计算题
1.求
2
0
5
0
sin()
lim
x
x
xtdt
x
。
2.设3
1
()sin
x
Gxttdt,求
2
1
()Gxdx。
3.求
2
4
01
x
dx
x
。
4.求
n
k
nkn
kn
1
2
lim。
二.求满足下列性质的曲线C:设
000
(,)pxy为曲线22yx上任
一点,则由曲线22
0
,2,xxyxyx
所围成区域的面积A与
曲线2
0
,2yyyx
和C所围成区域的面积B相等。
三.求
L
yx
xdyydx
22
,其中1
9
)1(
:
2
2
y
x
L的上半平面内部分,从
点)0,2(到)0,4(。
四.证明:
2004
2
2003
1
|sin|
2003
tdt。
五.设()x
在[0,1]上可导,且(0)0,(1)1。证明:存在(0,1)
内的两个数
与,使3
)(
2
)(
1
。
六.从正方形四个顶点)0,0(),0,1(),1,1(),1,0(
4321
PPPP,开始,构造
,,
65
PP,使得
5
P为
21
PP的中点,
6
P为
32
PP的中点,
7
P为
43
PP的
大学生电脑主页————大学生的百事通
中点,,
n
P为
43nn
PP
的中点。这样,我们得到点列}{
n
P收敛
于正方形内部一点
0
P,试求
0
P的坐标。
本文发布于:2023-03-12 01:48:45,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/e/action/ShowInfo.php?classid=88&id=8408
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:电脑主页.doc
本文 PDF 下载地址:电脑主页.pdf
留言与评论(共有 0 条评论) |