质因数(数学概念)

更新时间:2025-01-01 19:46:56 阅读: 评论:0

质因数(数学概念)

质因数 (数学概念) 次浏览 | 2022.05.29 13:18:58 更新 来源 :互联网 精选百科 本文由作者推荐 质因数数学概念

质因数(素因数或质因子)在数论里是指能整除给定正整数的质数。除了1以外,两个没有其他共同质因子的正整数称为互质。因为1没有质因子,1与任何正整数(包括1本身)都是互质。正整数的因数分解可将正整数表示为一连串的质因子相乘,质因子如重复可以指数表示。根据算术基本定理,任何正整数皆有独一无二的质因子分解式。只有一个质因子的正整数为质数。每个合数都可以写成几个质数(也可称为素数)相乘的形式,这几个质数就都叫做这个合数的质因数。如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。而这个因数一定是一个质数(1除外)。

中文名

质因数

英文名

Prime Factors

别称

素因数或质因子

例子

1没有质因子

应用学科

数学

例子

1没有质因子。

5只有1个质因子,5本身。(5是质数)

6的质因子是2和3。(6 = 2 × 3)

2、4、8、16等只有1个质因子:2。(2是质数,4 =2²,8 = 2³,如此类推)

10有2个质因子:2和5。(10 = 2 × 5)

相关内容基本信息

质因数就是一个数的约数,并且是质数。

比如8=2×2×2,2就是8的质因数;

12=2×2×3,2和3就是12的质因数。

把一个式子以12=2×2×3的形式表示,叫做分解质因数。

把一个合数写成几个质数相乘的形式表示,这也是分解质因数 [4]  ,如16=2×2×2×2,2就是16的质因数。

把一个合数分解成若干个质因数的乘积的形式,即求质因数的过程叫做分解质因数。

分解质因数只针对合数。(分解质因数也称分解素因数)求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。

分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数 。

分解质因数的有两种表示方法,除了最常用的“短除分解法”之外,还有一种方法就是“塔形分解法”。

分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。

Pollard Rho因数分解

1975年,John M. Pollard提出了第二种因数分解的方法,Pollard Rho快速因数分解。该算法时间复杂度为。

分解质因数代码:

将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。

程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:

(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。

(2)如果n>k,但n能被k整除,则应打印出k的值,并用n除以k的商作为新的正整数n,重复执行第一步。

(3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步。

计算方法

短除法

求最大公因数的一种方法,也可用来求最小公倍数。

求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。

例1、求12与18的最大公因数。

12的因数有:1、2、3、4、6、12 。

18的因数有:1、2、3、6、9、18。

12与18的公因数有:1、2、3、6。

12与18的最大公因数是6 [4]  。

这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。

12=2×2×3

18=2×3×3

12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数。

采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。

从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。

实际应用中,是把需要计算的两个或多个数放置在一起,进行短除。

在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下。最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数。

只含有1个质因数的数一定是亏数。

参考资料

本文发布于:2023-06-03 23:48:30,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/92/192440.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:质因数(数学概念).doc

本文 PDF 下载地址:质因数(数学概念).pdf

标签:质因数   概念   数学
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|