循环节不是从小数部分第一位开始的,叫混循环小数。例如:1.2333333……、13.0984343434343……等。观察到:1.2333333……的循环节在3上面。
中文名混循环小数
英文名Mix repeating decimals
特点循环节不是第一位开始
举例1.2333333……
区别整数部分不是都为0
化分数能
特点混循环小数最简分数a/b能化为混循环小数的充要条件是分母b既含有质因数2或5,又含有2和5以外的质因数。如:1/6,2/15等。
化分数方法混循环小数化成分数的方法是:用第二个循环节以前的小数部分所组成的数,减去不循环部分所得的差,以这个差作为分数的分子;分母的前几位数字是9,末几位数字为0;9的个数与一个循环节的位数相同,0的个数与不循环部分的位数相同。
混循环小数化分数
一个混循环小数的小数部分可以化成分数:
这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。
其中9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
这种化的方法,比纯循环小数化成分数明显要复杂,但究其算理,仍依据纯小数化成分数的方法。即:先把混循环小数化成纯循环小数的形式,然后再化成分数。上面三个例题通过推导,都可以得到证明。
由此可见,采用先扩大后缩小相同倍数的方法,根据纯循环小数化成分数的方法,证明混循环小数化成分数的方法是完全成立的。
举例0.13333……化为分数
分子:13-1=12
分母:循环节1位,不循环部分1位,因此是90
即0.13333……=12/90=2/15
5.07107“5.0710710……”是循环小数。有人说,能把它看作是纯循环小数,写作5.071,也能把它看作是混循环小数,写作5.0710。这种把一个循环小数,可以看作纯循环小数,也可以看作混循环小数的说法是错误的。[1]
参考资料本文发布于:2023-06-02 03:27:18,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/92/189941.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:混循环小数(循环节不是从小数部分第一位开始的小数).doc
本文 PDF 下载地址:混循环小数(循环节不是从小数部分第一位开始的小数).pdf
留言与评论(共有 0 条评论) |