计数原理(数学中的重要研究对象)

更新时间:2024-12-23 03:56:56 阅读: 评论:0

计数原理(数学中的重要研究对象)

计数原理 (数学中的重要研究对象) 次浏览 | 2022.09.19 12:37:13 更新 来源 :互联网 精选百科 本文由作者推荐 计数原理数学中的重要研究对象

计数原理是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本章中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。

中文名

计数原理

学科

数字

性质

原理

用途

证明二项式定理

应用学科

离散数学、组合数学

内容介绍加法原理

如果一个目标可以在n种不同情况下完成,第k种情况又有 种不同方式来实现 ,那么实现这个目标总共有 种方法。

注意事项:

(1)每种方式都能实现目标,不依赖于其他条件;

(2)每种情况内任两种方式都不同时存在;

(3)不同情况之间没有相同方式存在。

乘法原理

如果实现一个目标必须经过n个步骤,第k步又可以有 种不同方式来实现 ,那么实现这个目标总共有 种方法。

注意事项:

(1)步骤可以分出先后顺序,每一步骤对实现目标是必不可少的;

(2)每步的方式具有独立性,不受其他步骤影响;

(3)每步所取的方式不同,不会得出(整体的)相同方式。

两个原理异同

加法原理和乘法原理的关键点在于区分是分类还是分步。

相同点

加法原理和乘法原理一样,都是回答有关一件事的不同方法种数的问题。

区别点

加法原理是完成这件事的分类计数方法,每一类都可以独立完成这件事;乘法原理是完成这件事的分步计数方法,每个步骤都不能独立完成这件事。应用这两个原理解题,首先应该分清要完成的事情是什么,然后需要区分是分类完成还是分步完成,“类”间相互独立,“步”间相互联系。

典例

例1

求以下要求的计数。

A:大于0小于10的偶数;

B:大于0小于10的奇数;

C:大于0小于10的整数;

D:大于0小于10的质数。

E:大于0小于10的质数或偶数。

解:

(1)A={2,4,6,8},|A|=4;

(2)B={1,3,5,7,9},|B|=5;

(3)C=A∪B,|C|=|A|+|B|=9;

(4)D={2,3,5,7},|D|=4;

(5)E=A∪D,但质数与偶数并不互斥,有一个公共元素2,故有|E|=|A|+|D|-1=4+4-1=7。例2

从A地到B地共有3种方法,从B地到C地共有两种方法,问从A地到C地共有多少种方法。

解:要从A地到C地,需要先从A到B,再从B到C,且A到B的3种方法和B到C的2种方法互不干扰,故总共有3×2=6种方法。

参考资料

本文发布于:2023-06-02 02:36:59,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/92/189631.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:计数原理(数学中的重要研究对象).doc

本文 PDF 下载地址:计数原理(数学中的重要研究对象).pdf

标签:研究对象   学中   原理
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|