标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
中文名标准差
英文名Standard Deviation
别称均方差
应用学科统计学
符号用σ表示
简介标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。即观察值围绕均数的分布较离散,均数的代表性较差。反之,标准差越小,表明观察值间的变异较小,观察值围绕均数的分布较密集,均数的代表性较好。[1]测量到分布程度的结果,原则上具有两种性质:为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
标准计算公式:
假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值为μ,公式如图1。
标准差也被称为标准偏差,或者实验标准差
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为18.71分,B组的标准差为2.37分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。
如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);
如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);
因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。
公式意义所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。
深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%。根据正态分布,两个标准差之内(深蓝,蓝)的比率合起来为95%。根据正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为99%。
计算公式假设有一组数值x1,...,xN(皆为实数),其平均值为:
标准差此组数值的标准差为:
标准差一个较快求解的方式为:
标准差一随机变量X的标准差定义为:
标准差须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。如果随机变量X为x1,...,xN具有相同机率,则可用上述公式计算标准差。从一大组数值当中取出一样本数值组合x1,...,xn,常定义其样本标准差:
标准差函数Excel中有STDEV、STDEVP;STDEVA,STDEVPA四个函数,分别表示样本标准差、总体标准差;包含逻辑值运算的样本标准差、包含逻辑值运算的总体标准差(excel用的是“标准偏差”字样)。
在计算方法上的差异是:样本标准差^2=(样本方差/(数据个数-1));总体标准差^2=(总体方差/(数据个数))。
函数的excel分解:
⑴stdev()函数可以分解为(假设样本数据为A1:E10这样一个矩阵):
stdev(A1:E10)=sqrt(DEVSQ(A1:E10)/(COUNT(A1:E10)-1))
⑵stdevp()函数可以分解为(假设总体数据为A1:E10这样一个矩阵):
stdev(A1:E10)=sqrt(DEVSQ(A1:E10)/(COUNT(A1:E10)))
同样的道理stdeva()与stdevpa()也有同样的分解方法。
外汇术语标准差指统计上用于衡量一组数值中某一数值与其平均值差异程度的指标。标准差被用来评估价格可能的变化或波动程度。标准差越大,价格波动的范围就越广,股票等金融工具表现的波动就越大。
在excel中调用函数“STDEV“
估算样本的标准偏差。标准偏差反映相对于平均值(mean)的离散程度。
离散度标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。
虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,基检测值应该很紧密的分散在真实值周围。如何不紧密,那距真实值的就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
一组数据怎样去评价和量化它的离散度呢?人们使用了很多种方法:
最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。
2.离均差的平方和
由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。
3.方差(S2)由于离均差的平方和与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。
我们知道,样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
4.标准差(SD)由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
5.变异系数(CV)标准差能很客观准确的反映一组数据的离散程度,但是对于不同的检目,或同一项目不同的样本,标准差就缺乏可比性了,因此对于方法学评价来说又引入了变异系数CV。
与平均值的关系标准差与平均值的关系
一组数据的平均值及标准差常常同时做为参考的依据。在直觉上,如果数值的中心以平均值来考虑,则标准差为统计分布之一"自然"的测量。较确切的叙述为:假设x1,...,xn为实数,定义其公式
使用微积分,不难算出σ(r)在下面情况下具有唯一最小值。
应用举例标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
与标准偏差区别标准偏差与标准差的区别
标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准偏差(Std Dev,Standard Deviation)-统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
应用实例选基金在投资基金上,一般人比较重视的是业绩,但往往买进了近期业绩表现最佳的基金之后,基金表现反而不如预期,这是因为所选基金波动度太大,没有稳定的表现。
衡量基金波动程度的工具就是标准差(Standard Deviation)。标准差是指基金可能的变动程度。标准差越大,基金未来净值可能变动的程度就越大,稳定度就越小,风险就越高。
基金的算法比方说,一年期标准差是30%的基金,表示这类基金的净值在一年内可能上涨30%,但也可能下跌30%。因此,如果有两只收益率相同的基金,投资人应该选择标准差较小的基金(承受较小的风险得到相同的收益),如果有两只相同标准差的基金,则应该选择收益较高的基金(承受相同的风险,但是收益更高)。
建议投资人同时将收益和风险计入,以此来判断基金。例如,A基金二年期的收益率为36%,标准差为18%;B基金二年期收益率为24%,标准差为8%,从数据上看,A基金的收益高于B基金,但同时风险也大于B基金。A基金的"每单位风险收益率"为2(0.36/0.18),而B基金为3(0.24/0.08)。因此,原先仅仅以收益评价是A基金较优,但是经过标准差即风险因素调整后,B基金反而更为优异。
另外,标准差也可以用来判断基金属性。据晨星统计,今年以来股票基金的平均标准差为5.14,积配型基金的平均标准差为5.04;保守配置型基金的平均标准差为4.86;普通债券基金平均标准差为2.91;货币基金平均标准差则为0.19;由此可见,越是积极型的基金,标准差越大;而如果投资人持有的基金标准差高于平均值,则表示风险较高,投资人不妨在观赏奥运比赛的同时,也检视一下手中的基金。
企业中的应用资本结构指的是企业各种资金来源的比例关系,是企业筹资活动的结果。最优资本结构是指能使企业资本成本最低且企业价值最大的资本结构;产权比率,即借入资本与自有资本的构成比例,是反映企业资本结构的重要变量。企业的资产由债务性资金和权益性资金组成,但其风险等级和收益率各不相同。
根据投资组合理论,投资的多样化可以分散掉一定的风险,因此资金提供者需要决定投资于债务性资金和权益性资金的比例。以便在权衡风险和收益的情况下保证其利益的最大化。理论探索而外部资金提供者利益的最大化也就是企业价值的最大化,这一投资比例对于企业融资而言也就是企业的最优资本结构比例。
假定某企业的资金通过发行债券和股票两种方式获得,并且都属于风险性资产。σ其中债券的收益率为rD,风险通过标准差σD来衡量;股票的收益率为rE,风险为σE;股票和债券的相关系数为pDE,协方差为COV(rD,rE);债券所占的比重为wD,股票所占比重为WE(WD+WE=1)。根据投资组合理论,企业外部投资者对该企业投资所获的期望收益率为E(rp) =WDE(rD) +wEE(rE),方差为
1、企业债务性资金和权益性资金完全正相关,即相关系数pDE为1。企业外部投资者获得的期望收益率为E(rp)=wDE(rD)+wEE(rE),风险标准差为σ=wDσD+wEσE,也就是组合的标准差等于各个部分标准差的加权平均值,通过投资组合不可能分散掉投资风险。根据投资组合理论,投资组合的不同比例对于投资者而言是无差异的。
2、企业债务性资金和权益性资金完全负相关,即其相关系数为-1。投资者获得的报酬率的期望值及其方差分别为。根据投资组合理论,只有当投资比例大于σE/(σD+σE)时其投资组合才是有效的。对于企业筹资而言,也即企业的权益性资金的比例大干σE/(σD+σE),企业的筹资比例才是有效的,而且当组合比例为σE/(σD+σE)时,企业的筹资组合风险为零。
⒊、企业债务性资金和权益性资金的相关系数大于-1小于1。理论上,一个企业的两种筹资方式之间的相关程度较高,一方面两种筹资方式都承担系统风险,另一方面它们也承担相同的公司风险。因此从实践来看,企业的不同筹资方式间的相关程度不可能是完全的正相关和负相关。对于一个企业而言,债务性资金对企业有固定的要求权,权益性资金对企业只有剩余要求权,因此债务性资金的波动不可能像权益性资金的波动那么大。同时企业的风险会同时影响企业的债务性资金和权益性资金,因此企业的债务性资金和权益性资金的相关系数不可能为负数。企业不同的筹资方式间的相关系数一般在0-1之间。
那么究竟在什么比例下企业的价值才会达到最大呢?根据投资组合理论,当E(r1)>E(r2),且时,才能出现r1,优于r2。可见,决定企业资本结构的直接因素主要是不同筹资方式的收益率和风险以及它们之间的相关系数。
参考资料本文发布于:2023-06-01 10:12:39,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/92/183575.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:标准差(统计学术语).doc
本文 PDF 下载地址:标准差(统计学术语).pdf
留言与评论(共有 0 条评论) |