参数方程和函数相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)——⑴;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。
中文名参数方程
外文名parametric equation
类别数学
定义参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。[1]
在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)——⑴;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。⑵
圆的参数方程公式:x=a+rcosθ,y=b+rsinθ(θ∈[0,2π))(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。[2]
椭圆的参数方程 x=a cosθ y=b sinθ(θ属于[0,2π)) a为长半轴 长 b为短半轴长 θ为参数
双曲线的参数方程 x=a cθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
或者x=x'+ut, y=y'+vt (t属于R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)
圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数
平摆线参数方程 x=r(θ-sinθ) y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱。
方程的应用在柯西中值定理的证明中,也运用到了参数方程。
柯西中值定理
如果函数f(x)及F(x)满足:
⑴在闭区间[a,b]上连续;
⑵在开区间(a,b)内可导;
⑶对任一x∈(a,b),F'(x)≠0,
那么在(a,b)内至少有一点ζ,使等式
[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。
柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。
参考资料本文发布于:2023-06-01 09:17:33,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/92/183232.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:参数方程(数学术语).doc
本文 PDF 下载地址:参数方程(数学术语).pdf
留言与评论(共有 0 条评论) |