顶点坐标(几何名称)

更新时间:2025-01-11 00:58:31 阅读: 评论:0

顶点坐标(几何名称)

顶点坐标 (几何名称) 次浏览 | 2022.09.20 14:42:44 更新 来源 :互联网 精选百科 本文由作者推荐 顶点坐标几何名称

二次函数顶点式Y=a倍(x-h)的平方-k,在知道顶点的时候求解析式,在知道2个点时即可二次函数抛物线顶点式&顶点坐标,顶点式:y=a(x-h)^2+k,顶点坐标:(h,k)这个公式在生活中很多地方都可以用到,他说白了就是扔东西所走的路线。

中文名

顶点坐标

外文名

method of capstone coordinate

适用领域

几何

所属学科

数学

公式

y=a(x-h)^2;

解释

在二次函数的图像上

顶点式:y=a(x-h)^2;+k 抛物线的顶点P(h,k)

顶点坐标:对于二次函数 y=ax^2;+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2;)/4a)

考点扫描

1.会用描点法画出二次函数的图象.

顶点坐标

2.能利用图象或配方法确定抛物线的开口方向及对称轴、顶点的位置.

3.会根据已知图象上三个点的坐标求出二次函数的解析式.

名师讲解

1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式 

y=ax² 

y=a(x-h)² 

y=a(x-h)²+k 

y=ax²+bx+c 

顶点坐标 

[0,0] 

[h,0] 

[h,k] 

[-b/2a,(4ac-b²)/4a ] 

对 称 轴 

x=0 

x=h 

x=h 

x=-b/2a 

当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到, 

当h<0时,则向左平行移动|h|个单位得到. 

当h>0,k>0时,将抛物线y=ax&sup2;向右平行移动h个单位,再向上移动k个单位,就可以得

顶点坐标

到y=a(x-h)&sup2;+k的图象;

当h>0,k<0时,将抛物线y=ax&sup2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)&sup2;+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)&sup2;+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)&sup2;+k的图象;

因此,研究抛物线y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)&sup2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax&sup2;+bx+c(a≠0)的图象:当a>0时,开口向上"当a<0时,开口向下,对称轴是直线x=-b/2a,顶点坐标是&#91; -b/2a,(4ac-b&sup2;)/4a&#93;

3.抛物线y=ax&sup2;+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小. 4.抛物线y=ax&sup2;+bx+c的图象与坐标轴的交点: 

(1)图象与y轴一定相交,交点坐标为(0,c); 

(2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax&sup2;+bx+c=0 

(a≠0)的两根.这两点间的距离AB=|x2-x1|=. 

当△=0.图象与x轴只有一个交点; 

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 

5.抛物线y=ax&sup2;+bx+c的最值:如果a>0(a<0),则当x=时,y最小(大)值=. 

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 

6.用待定系数法求二次函数的解析式 

待定系数法: (已知函数类型如: -次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重 要的数学方法,它只适用于已知所求函数的类型求其解析式。

7.一元二次方程顶点坐标:[-b/2a,(4ac-b²)/4a]。顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数)。[1]

8.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.[2]

二次函数常用的一般形式

1.y=ax^2+bx+c (a≠0) 

2.y=ax^2 (a≠0) 

3.y=ax^2+c (a≠0) 

4.y=a(x-h)^2 (a≠0) 

5.y=a(x-h)^2+k (a≠0)←顶点式 

6.y=a(x-x1)(x-x2) (a≠0)←交点式

参考资料

本文发布于:2023-06-01 05:07:29,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/92/181701.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:顶点坐标(几何名称).doc

本文 PDF 下载地址:顶点坐标(几何名称).pdf

标签:顶点   坐标   几何   名称
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|