三角函数符号(数学公式符号)

更新时间:2025-01-11 05:37:22 阅读: 评论:0

三角函数符号(数学公式符号)

三角函数符号 (数学公式符号) 次浏览 | 2022.09.01 12:08:25 更新 来源 :互联网 精选百科 本文由作者推荐 三角函数符号数学公式符号

数学三角函数符号。毛罗利科早於1558年已採用三角函数符号(Signs for trigonometric functions),但当时并无函数概念,於是只称作三角缐( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示馀弦。正弦是最重要也是最古老的一种三角函数。它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还创造出了比托勒密更精准的正弦表。

中文名

三角函数符号

英文名

Signs for trigonometric functions

开始采用

1558年

发明人

毛罗利科

包 括

正弦 余弦 正切 余切 正割 余割

三角函数公式

诱导公式

三角函数弦表

“弦表”就是正弦表的前身,因此可以说正弦是最重要也是最古老的一种三角函数。早期的三角学,是伴随着天文学而产生的。古希腊天文学派希帕霍斯为了天文观测的需要,制作了一个“弦表”,即在圆内不同圆心角所对弦长的表。相当于现在圆心角一半的正弦表的两倍。这就是正弦表的前身,可惜没有保存下来。

希腊的数学转入印度,阿耶波多作了重大的改革。一方面他定半径为3438,含有弧度制的思想。另一方面他计算半弦(相当于现在的正弦线)而不是希腊人的全弦。他称半弦为jiva,是猎人弓弦的意思。后来印度的书籍被译成阿拉伯文,jiva被音译成jiba,但此字在阿拉伯文中没有意义,辗转传抄,又被误写成jaib,意思是胸膛或海湾。12世纪,欧洲人从阿拉伯的文献中寻求知识。1150年左右,意大利翻译家杰拉德将jaib意译为拉丁文sinus,这就是现存sine一词的来源。英文保留了sinus这个词,意义也不曾变。

sinus并没有很快地被采用。同时并存的正弦符号还有Perpendiculum(垂直线),表示正弦的符号并不统一。计算尺的设计者冈特在他手画的图上用sin表示正弦,后来,英国的奥特雷德也使用了sin这一缩写,同时又简写成S。与此同时,法国的埃里冈在《数学教程》中引入了一整套数学符号,包括sin,但仍然没有受到同时代人的注意。直到18世纪中叶,逐渐趋于统一sin。余弦符号ces,也在18世纪变成现在cos。

函数符号

毛罗利科早于1558年已采用三角函数符号(Signs for trigonometric functions),但当时并无函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus表示正弦,以sinus 2m arcus表示余弦。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent”(正切)及“cant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan.”,“c.”,“sin”,“tan”,“c”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。后来的 符号多有变化,下列的表便显示了它们之发展变化。

使用者 年代 正弦 余弦 正切 余切 正割 余割 备注

罗格蒙格努斯 1622 S.R. T. (Tang) T. cpl Sec Sec. Compl

吉拉尔 1626 tan c.

杰克 1696 s. cos. t. cot. c. coc.

欧拉 1753 sin. cos. tag(tg). cot. c. coc

谢格内 1767 sin. cos. tan. cot. Ⅰ

巴洛 1814 sin cos. tan. cot. c coc Ⅰ

施泰纳 1827 tg Ⅱ

皮尔斯 1861 sin cos. tan. cotall c coc

奥莱沃尔 1881 sin cos tan cot c csc Ⅰ

申弗利斯 1886 tg ctg Ⅱ

万特沃斯 1897 sin cos tan cot c csc Ⅰ

舍费尔斯 1921 sin cos tg ctg c csc 

注:

Ⅰ-现代(欧洲)大陆派三角函数符号。

Ⅱ-现代英美派三角函数符号

我国现正采用Ⅱ类三角函数符号。

1729年,丹尼尔.伯努利是先以符号表示反三角函数,如以AS表示反正弦。1736年欧拉以At表示反正切,一年後又以Asinb/c表示于单位圆上正弦值相等于b/c的弧。

1772年,C.申费尔以arc.tang.表示反正切;同年,拉格朗日采以arc.sin1/1+α表示反正弦函数。1776年,兰伯特则以arc.sin表示同样意思。1794年,鲍利以Arc.sin表示反正弦函数。其後这些记法逐渐得到普及,去掉符号中之小点,便成现今通用之符号,如arcsinx,arccosx等。于三角函数前加arc表示反三角函数,而有时则改以于三角函数前加大写字母开头Arc,以表示反三角函数之主值。

另一较常用之反三角函数符号如sin-1x,tan-1x等,是赫谢尔于1813年开始采用的,把反三角函数符号与反函数符号统一起来,至今亦有应用。〔若对各三角函数的符号演变史感兴趣,可参梁宗巨(1995),《数学历史典故》,页100-108,台北:九章出版社。〕

函数公式表

诱导公式[1]

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a)

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tgA=tanA=sinA/cosA

两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))

tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))

三角函数和差化积公式

sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)

sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)

cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)

cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)

积化和差公式[2]

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

二倍角公式

sin(2a)=2sin(a)cos(a)

cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)

半角公式

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

万能公式

sin(a)=(2tan(a/2))/(1+tan^2(a/2))

cos(a)=(1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)=(2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)[其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)[其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重点三角函数

csc(a)=1/sin(a)

c(a)=1/cos(a)

双曲函数

sinh(a)=(e^a-e^(-a))/2

cosh(a)=(e^a+e^(-a))/2

tgh(a)=sinh(a)/cosh(a)

参考资料

本文发布于:2023-06-01 04:38:53,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/92/181526.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:三角函数符号(数学公式符号).doc

本文 PDF 下载地址:三角函数符号(数学公式符号).pdf

标签:符号   函数   数学公式
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|