摩擦磨损过程和磨损形式

更新时间:2024-02-23 14:25:42 阅读: 评论:0

2024年2月23日发(作者:采购报告)

摩擦磨损过程和磨损形式

摩擦磨损过程和磨损形式

钱洪新

[摘 要]

在机器的运转过程中,作相对运动的零件之间总是伴随着摩擦而产生磨损。磨损通常是不希望出现的,它是消极的、不利的。本文阐述了摩擦磨损过程;分析了摩擦的种类和摩擦磨损的四种基本形式;揭示了摩擦磨损的规律。

[关键词]

摩擦 磨损 摩擦分类 磨损形式 磨损规律

机器的运转都是由运动副零件的配合表面相对运动来实现的,而配合表面的相对运动必然伴随着摩擦而产生磨损。在摩擦过程中,摩擦表面发生了尺寸、形状和表面质量的变化称为磨损。摩擦磨损是发动机零件最常见的一种损伤形式,是机器缩短使用寿命、丧失工作能力、影响安全可靠工作的主要因素之一。

一、 摩擦磨损过程

摩擦磨损与摩擦表面形貌有关。由于表面粗糙度的存在,两摩擦表面仅仅是在少数孤立点上发生接触,这时,法向载荷便由这些点上发生接触。接触面积越小,法向应力越大。当法向应力超过材料的屈服极限时,接触点就产生塑性变形。在塑性变形的同时,接触点处金属表面上的氧化膜也被压碎或剪切掉。这时,接触点金属分子间相互吸引力增大,有可能相互扩散而熔合在一起。我们把熔合在一起的现象称为冷焊。当相对运动继续进行时,由于剪切而使冷焊点破裂。以后又在接触点发生塑性变形、冷焊和破裂,直到真实接触面积增大到足以支承法向载荷时为止。这时,表面硬度增加了,表面粗糙度也有所提高了。

摩擦磨损过程是一个复杂的过程。当金属产生塑性变形时,要释放热量,因此,在摩擦表面上的温度要比基体金属的温度高得多。当温度高于再结晶温度时,因变形而引起的表面强化现象将消失;当温度继续升高时,金属被软化,摩擦表面金属分子相互粘结;当温度升高到相变温度,摩擦表面金属就会产生相变,强度和硬度也大大降低。在摩擦磨损过程中,摩擦表面还要与周围介质起作用。例如当氧化膜被压碎或前切后,裸露的金属表面迅速与氧气起化学反应,形成新的氧化膜。氧化膜和基体金属的结合力较弱,容易被压碎或剪切。另外,空气中的水分和润滑油中的硫分均能与摩擦表面起化学反应,产生化合物,加剧摩擦表面的磨损。因此,摩擦磨损过程就是由于机械和化学的

作用,使物质从表面不断损失或产生残余变形的过程。

二、 摩擦分类

按摩擦面之间有无润滑材料及润滑剂的存在状态将摩擦分为干摩擦、边界摩擦、液体摩擦和混合摩擦。

1、干摩擦

摩擦面之间没有润滑剂存在时发生的摩擦称为干摩擦。干摩擦的发生有许多理论解释,常用的是所谓“粘着—机械啮合”学说。由于物体之间摩擦面的微观状态是凹凸不平的,摩擦面之间的接触不发生在整个接触面上,摩擦只是发生在摩擦面之间凸峰与凸峰正好相对的地方,物体之间的正压力实际上只由占摩擦面很小部分的实际接触面积承受。由于这些凸峰与凸峰相接触的点受到相当大的压力而产生塑性变形,出现了粘着现象,使凸峰与凸峰就好像被“熔焊”在一起。当物体做相对运动时,为了将这些“熔焊”在一起的点撕裂所需要的力,就构成了摩擦力的主要部分。此外,还存在着一个摩擦面上的凸峰正好嵌入另一个摩擦面上的凹谷的情况,当物体做相对运动时,将产生机械啮合阻力,这是摩擦力的又一个来源。因而物体之间发生干摩擦时,其摩擦力是“熔焊”点造成 的粘着阻力与“凹凸体”机械啮合阻力之和。

干摩擦是有害的,主要表现在能量的损失(如转为热能)和机件的磨损上(如温度升高导致材料表面抗磨性及强度降低同时有磨屑的产生)。

2、 边界摩擦

边界摩擦亦称为边界润滑,是指物体之间摩擦面上存在一层由润滑剂构成的边界膜发生的摩擦。边界膜的性质是影响边界摩擦的主要因素,按其形成方式,可分为吸附膜和反应膜两类。吸附膜是通过物理因素(分子吸引)或化学因素(电子交换产生的化学结合力),使润滑剂中的极性分子产生定向排列形成的一层膜;

反应膜则是由含硫、磷、氯等元素的润滑油添加剂与摩擦表面起化学反应,所生成的新的物质而构成的一层膜。在边界润滑作用比较充分,即形成的分子栅有较大的承载能力和长度时,摩擦仅发生在边界膜之间,摩擦系数仅与摩擦面的性质(材质、几何形状等)和润滑剂的油性有关,也就是说摩擦系数与摩擦面润滑剂之间形成极性分子栅的能力和分子栅本身的承载能力有关,而与润滑油的粘度大小无关。当边界润滑作用较差时,某些部位的边界膜被破坏,造成摩擦面的直接接触,从而形成干摩擦,使摩擦系数增大。

吸附膜的稳定性较差,在一定温度下,定向排列的极性分子会因热运动而变得杂乱无章,甚至从摩擦面上脱落下来,使得吸附膜失去承载能力,润滑作用大大减小。反应膜较吸附膜稳定得多,因为在高温下化学反应的速度加快,更有利于生成新的物质来加强反应膜,所以反应膜适于重载低速和高温的条件。但是生成反应膜时,一般伴随着对金属有腐蚀性。

3. 液体摩擦

液体摩擦亦称为液体润滑,当物体之间的接触面被润滑油膜完全隔开时,物体相对运动所产生的摩擦叫液体摩擦。液体摩擦时,物体之间的摩擦面没有直接接触,其间除了边界润滑膜外,还有流动油膜。因此摩擦仅发生在润滑油之间,运动阻力仅由润滑油分子间的吸引力(内聚力)形成,因而摩擦系数很小,一般在0.01~0.001的范围内。

4. 混合摩擦

混合摩擦亦称为混合润滑,是属于一种不稳定的润滑。它既存在着润滑油粘度所产生的粘滞阻力,也存在着金属表面微凸体接触所产生的摩擦阻力。实际上它是指上述三种摩擦中有两种摩擦同时存在的情形,可分为半干摩擦和半液体摩擦。半干摩擦是指干摩擦和边界摩擦同时存在的情形,不充分的边界摩擦将导致半干摩擦。半液体摩擦是液体摩擦和边界摩擦同时存在的情形,不充分的液体摩擦会导致半液体摩擦。工业设备经常处于混合摩擦状况。

三、摩擦磨损形式

根据摩擦磨损过程的不同特征,磨损可分为粘着磨损、磨粒磨损、表面疲劳磨损和腐蚀磨损四种基本形式。

1、 粘着磨损

摩擦副在法向载荷的作用下,接触点产生塑性变形,氧化膜被压碎或剪切,接触点发生冷焊。如果运动速度较小而法向载荷较大,摩擦表面温升很高,金属软化或熔化,接触点金属就相互粘着在一起。当继续运动时,粘着处被剪切,这样粘着、剪切、再粘着、剪切的过程,就构成粘着磨损。根据剪切部位的不同,粘着磨损又可分为轻微磨损、涂抹、擦伤、撕裂和咬死五种。当剪切发生在粘着面上,表面转移的物质极轻微;当剪切发生在离粘着面不远的软金属浅层内,软金属就涂抹到硬金属表面现象上;当剪彩切发生在软金属的亚表层内,软金属表面出现擦伤或拉毛痕迹;当剪切发生在摩擦副较深处,表面就出现撕裂;当粘着强度比基体金属剪切强度高,而且粘着区域大,相对运动

时的剪切应力又低于基体金属的剪切强度,摩擦表面就咬死。

2、 磨粒磨损

摩擦副表面间存在磨粒时,它能使表面层金属产生部分塑性变形,有时磨粒还会切削表层金属,使表层产生擦伤和拉毛。表层产生塑性变形后,氧化膜被剪切,因此促进表面金属继续氧化,使氧化磨损速度加快。

磨粒磨损有两种情况,一是在法向载荷作用下硬颗粒滑过软表面时,在软表面上刨出许多沟槽,这叫两物体的磨粒磨损。若摩擦表面进入硬质颗粒,并从摩擦表面上切下微细切屑,一起在法向载荷的作用下滑过摩擦副表面,这叫三物体磨粒磨损。硬质颗粒可以是磨损产物,也可以是空气或润滑油中的杂质。大多数机械在含有污垢和灰尘中工作,属于第二种磨粒磨损。

3、 表面疲劳磨损

摩擦副的摩擦表面作滚动或滚动与滑动的复合摩擦时,在交变接触应力作用下,使摩擦表面疲劳而产生裂纹后,分离出碎片、颗粒的现象,称为表面疲劳磨损。在滑动摩擦副中,尽管两个零件没有直接接触,但摩擦表面仍受到由油膜传递的载荷影响,产生应力。其中最大压应力发生在表面上,而最大剪切应力则发生在表层内。当应力超过持久限值,材料就破坏了。

4、 腐蚀磨损

在摩擦过程中,摩擦表面与周围液体、气体或汽体发生以化学或电化学腐蚀为主的磨损,称为腐蚀磨损。腐蚀产物通常与表面结合不牢,因而继续摩擦会使它们分离,这一过程又重复进行。当腐蚀成为磨损的主因时,通常有几种磨损形式同时发生。例如,常见的表面膜往往是氧化铁,从表面脱落后都变成磨料。因此,两摩擦表面将同时发生腐蚀磨损和磨粒磨损。

四、磨损规律

任何一对摩擦副零件,在正常使用条件下,其产生的磨损是有一定规律的。摩擦磨损一般分为三个阶段:第一阶段为磨合期。磨合期是摩擦初期改变摩擦表面几何形状和表面物理化学特性的过程。在摩合期内,由于表面高低不平,实际接触表面小,接触点的压应力大,磨损较大。如果在两表面定期注入润滑油,也往往由于摩擦产生大量热而使油膜遭到破坏,引起粘着磨损。所以在磨合期运行时,要求载荷和速度小,润滑油多些。载荷小,接触点压应力小,磨损小,因塑性变形产生的热量也小;润滑油多,使摩

擦表面获得较好的润滑和冷却,并将磨屑带走,减少磨粒磨损。如果在磨合期一开始就提高载荷和速度,润滑油也供应不充分,这时,摩擦表面不仅不能获得光滑表面,而且越来越粗糙,使配合性质发生恶化;第二阶段为正常磨损期,或者称为稳定磨损期。这个阶段,磨损趋于缓慢,因为磨合以后,摩擦表面已比较光滑,冷加工硬化层也逐步形成,表面硬度增加,磨损显著减少。这时可以承受较大的载荷和较高的速度。但要加强维护保养工作,注意排除某些增加磨损的因素:例如,润滑油要清洁、供给要充分、冷却要良好等。使正常磨损阶段尽可能延长;第三阶段为急剧磨损期,是磨损的最后阶段。经长期运行后,不仅使零件摩擦表面几何形状发生较大变化,而且使零件精度和配合性质变坏,产生振动,温度升高,磨损急剧增加,此时机器应停止运行,进行检修。否则零件将失去正常工作状态,最后导致机损事故。

参考文献:

许菊若主编,《机械设计》,北京,化学工业出版社,2005年6月。

大连海运学院船机工艺研究室编,《船机检修技术》,人民交通出版社,1983年5月。

摘要:文章探讨了金属材料的干滑动摩擦磨损及电接触滑动摩擦磨损的影响因素,认为材料的摩擦磨损过程相当复杂,尤其在通电条件下摩擦磨损受到载荷、速度、电流、电压等综合因素的影响。以期为开发、生产、应用新材料提供基础的理论研究和实践保障。

关键词:金属材料;摩擦磨损;材料干滑动;电接触滑动摩擦高导、耐磨、耐蚀性材料的大量需求使得在研究、开发新材料时,它的摩擦磨损特性也备受关注。摩擦学是研究做相对运动的相互作用表面及其有关理论和实践的科学和技术,是一门综合性学科,其中电接触摩擦磨损更加复杂。摩擦磨损是受多种非线性、强耦合因素作用的过程。通常,摩擦和磨损过程受到摩擦副、润滑济、工作参数、环境和工作历史等许多因素的影响。

一、干滑动摩擦磨损机理

干滑动摩擦磨损是一种特殊的摩擦磨损形式。

摩擦副材料具有高的耐磨性、高而稳定的摩擦系数,较高的力学性能及优良的其他使用性能。在摩擦初期,摩擦面附近的温度梯度很大,而远离摩擦面处温度低,同时温度梯度较小。干滑动摩擦条件下,摩擦副的摩擦表面由于摩擦热的介入,处于非常高的温度。材料的干摩擦行为中,摩擦系数的高低与摩擦过程中所发生的三种现象有关:(1)滑动表面光滑区域的粘着;(2)磨粒和硬质粗糙对对偶面造成的犁削;(3)粗糙表面的变形。对于不同的滑动条件、摩擦副材料和工作环境,三种过程对摩擦系数的影响是不同的。

一般来说,犁削和粗糙表面的变形对总的摩擦系数的影响要比粘着的影响大。当受电弓滑板工作在粉尘、风沙较大条件时,砂粒等硬颗粒附着在滑板或导线上进入接触面,将导致磨粒磨损的产生。(1)磨粒对表面产生犁沟作用或称微切削、划伤表面;(2)磨粒压入表面,因挤压作用使表面材料塑性变形而脆化,从而在滑动时形成鳞片状的剥落屑。

影响材料干滑动摩擦磨损行为的因素有:1.载荷的影响。载荷对复合材料的磨损特性有很大的影响,载荷的增加使摩擦生热显著增加,使基体有蠕变软化的趋势,有利于微裂纹的扩展。同时,载荷增大易于发生严重粘着磨损,磨损量增加。

在摩擦过程中,载荷作用下基体次表层的塑性变形,使位错滑移和聚集,产生了许多空位和微裂纹,使表层组织变的疏松,结构发生软化。软化层的形成将严重削弱合金的耐磨性。

在载荷小于10N时,材料呈现出比基体合金更低的磨损率。这表明,磨损过程中发生了材料的转移过程。在载荷为10~95N时,材料的磨损表面形貌都具有严重塑性变形的特征,大量的塑性流变导致了摩擦层的形成。剥层磨损是主要的磨损机制。

2.速度的影响。滑动速度对干滑动摩擦磨损的影响也较大。在小于1.2m/s的滑动速度下,磨损机制被描述为疲劳磨损,相应的表面出现裂纹,磨损碎片很小。摩擦表层覆盖一层摩擦层,在这样的低滑动速度下,增强物对磨损率的影响不明显,在高的滑动速度下,磨损过程发生转变,这与摩擦层的破裂有关。

随着滑动速度向临界速度的增加,磨损率降低。这一临界速度取决于施加载荷、热扩散系数和磨损表面的硬度。

3.温度场的影响。影响摩擦温度场的主要因素为摩擦条件与摩擦副材料。随着摩擦速度与接触正压力乘积的增大,表面温度与温度梯度直线上升。因此,在干滑动摩擦条件下,摩擦热所引起的摩擦温度场是影响摩擦学行为的主要因素之一。另外,在干滑动摩擦过程中,一次摩擦过程,摩擦副经历一次由低温向高温,又由高温向低温的转变,这种温度循环在摩擦副中产生相当大的热应力。电车线材料的干滑动摩擦磨损行为受到载荷、温度、速度、环境、材质等多因素的影响,因此电车线材料的摩擦磨损机制十分复杂,而且研究条件具有很大的局限性,因此要赶上和达到国际领先水平,还需研究者作大量的工作。

二、电接触滑动摩擦磨损机理

摩擦和磨损过程受到摩擦副、润滑济、工作参数、环境和工作历史等许多因素的影响。材料的强度或者说材料对外载荷的响应与温度、载荷作用速度、材料的应变量、应变速率和应变历史等都有密切关系。尤其在通电状况下,其摩擦和磨损过程更加复杂。另外,材料还要受到电流、电压等多因素的影响。磨损包括粘着磨损、磨粒磨损、腐蚀磨损、表面疲劳,还有侵蚀、气蚀和冲凿等。由此得出材料磨损量与行程成正比,与载荷成正比,与较软材料的屈服应力或硬度成反比。磨损都是由于较硬表面将较软材料犁出沟槽所致。一种情况是粗糙而坚硬的表面贴着较软的表面滑动。另一种情况是磨损是由于游离的坚硬粒子在两摩擦表面之间滑动所致。粘着磨损和磨粒磨损的机理有赖于固体的直接接触,它们所产生的磨损型式在摩擦一开始就是发展性的,当两滑动表面通过微凸体实现接触时,就会发生粘着磨损和磨粒磨损,并且微凸体可以互相穿过,而使一方或双方微凸体发生塑性变形。

如果在两表面间发生电火花,就会造成以去除和析出金属的形式出现的永久损坏。影响摩擦磨损过程的因素很多,且存在复杂的非线性相互作用。

Dobromiski列出微动过程主要影响因素有28种,而Meng认为滑动摩擦过程的影响因素和常数有100个之多。因此摩擦磨损机理的研究相当复杂。

影响电接触滑动摩擦磨损行为的因素有:1.电流的影响。载电流摩擦磨损是指处于电场中的材料及摩擦副,在电流通过条件下,材料及摩擦副的摩擦磨损行为。

研究发现,载流条件下摩擦副在摩擦过程中的热,主要来自三个方面:电弧热、摩擦热、电流产生的热。由于电流的存在,试验过程中不仅有摩擦热,还增加了电弧热和电流产生的热。因此比无电流干滑动条件下单纯的摩擦热大,摩擦表面温度高,摩擦严重,表面粗糙度增加,从而引起真实接触面积增大摩擦系数升高,同时使摩擦表面局部温度急剧升高而氧化。

电流对载流铬青铜/纯铜摩擦配副的摩擦系数有影响。电流的存在增大了摩擦系数,且随着速度的增加有电流条件下摩擦副的摩擦系数下降的趋势比无电流时的缓慢。在电场条件下由于硬质相的出现,在摩擦面上出现了磨粒磨损,表现为摩擦面上出现的犁沟。

在强电流作用下,当弓网间发生瞬时离线时,将产生严重的拉电弧现象,造成受电弓滑板和接触导线表面烧伤而使接触状况恶化。电流通过导体产生热效应,机械摩擦和接触电阻所产生的表面温度,实际接触粗糙峰上的瞬时闪温,都导致材料组织和性能发生变化,从而严重影响了材料的摩擦磨损性能。

2.电压的影响。在直流电压的作用有利于添加剂在金属表面形成化学吸附膜和化学反应膜,从而造成摩擦系数的下降。对Al2O3/Cu施加反向电压和正向电压:表明正向电压作用下的摩擦系数比反向电压的大,同时外加电场的存在能显著地增加摩擦副的摩擦系数。当电压接通时,摩擦副的摩擦系数比电压断开时高出约133%,说明外加电压的存在是造成摩擦系数增大的原因。即摩擦系数随之增大,电压断开时摩擦系数随之减小。

三、结论

金属材料的摩擦磨损过程受到多方面因素的影响,其干滑动摩擦磨损行为受到载荷、速度、温度场等的影响较大。但是在通电状况下,其滑动摩擦磨损行为更加复杂,还要受到电流及电压(电磁场)等的综合影响。

参考文献

[1]张永振.铸铁的干滑动摩擦磨损[J].现代铸造,2000,(2).

[2]陈跃.颗粒增强铝基复合材料干摩擦磨损研究进展[J].兵器材料科学与工程,1999,(22).

[3]李娜.受电工滑板-接触导线摩擦磨损机理与特性分析[J].中国铁道科学,1996,17(4).

[4]谢贤清.铸造法制备Tic/AZ43复合材料连续润滑摩擦行为研究[J].航空材料学报,2000,20(4).

[5]Alpas AT and Zhang [J].1992.

[6]Wang A and Rack Sci Eng[J].1991.

[7]Subramanian [J].1991.

[8]李鹏,等.有无电流条件下铬青铜/纯铜摩擦副摩擦磨损性能[J].润滑与密封,2003,(2).

[9]In-sitnelectro-charging for friction reduction and wear resist and film formation[J].Tribology

Transaction,1991,34(4).

[10]英·丁霍林编,上海交通大学摩擦学研究室译.摩擦学原理[M].机械工业出版社,1981.

摩擦磨损过程和磨损形式

本文发布于:2024-02-23 14:25:42,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1708669542147221.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:摩擦磨损过程和磨损形式.doc

本文 PDF 下载地址:摩擦磨损过程和磨损形式.pdf

上一篇:磨损的分类doc
下一篇:返回列表
标签:摩擦   磨损   表面   产生   材料   过程   发生   接触
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|