2024年2月21日发(作者:年轻母亲7)
利用类比思想,解决数学问题
例:如图1所示,直线a上有n个点A、B、C、D ……,由这n个点一共可以组成多少条线段?
一共有n个点
aABCDEF分析:我们可以知道,连接任意两点都可以形成一条线段。要想找出由这n个点一共可以组成线段的条数,应该是有很多条。为了不丢掉其中的任何一条,可以按照一定的规律进行。首先从最左边的点A开始,以它为所数线段的左端点,点A右边的(n-1)个点依次为右端点,分别是线段AB、AC、AD、AE、AF……,一共是(n-1)条线段,然后以左边第二个点点B为左端点,点B右边的(n-2)个点依次为所数线段的右端点,分别是线段BC、BD、BE、BF……,一共是(n-2)条线段,再次是以左边第三个点点C为所数线段的左端点,点C右边的(n-3)个点依次为所数线段的右端点的线段应该是(n-3)条,继续数下去……,最后是3条、2条、1条。所以这n个点所形成的线段的条数是:(n-1)+(n-2)+(n-3)+……+3+2+1=n(n1),其中n表示的是直线a上点的个数。
2n(n1)答:这n个点组成的线段一共是有条。
2总结:在知道由n个点可以组成线段条数的计算公式之后,只要是给出点的数量,就完全可以根据这个公式求出所组成的线段的条数,而不用一个一个的去数。
练习1:如图2,以点O为端点的射线一共有n条,这些射线组成的最大的角都小于平角,问这n条射线一共可以组成多少个角?(提示:任意两条射线都可以组成一个角)
练习2:如图3,圆上一共有n个不同的点,经过任意两点画一条直线,一共可以画多少条?(提示:经过任意两个点都可以画一条直线)
练习3:在同一平面上一共有n条直线,问这n条直线最多有多少个交点?
(提示:任意两条直线都应该有一个交点)
ABCDEHABGFEDC
O
本文发布于:2024-02-21 13:58:06,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1708495087146209.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:最新初中数学【素材一】利用类比,解决问题.doc
本文 PDF 下载地址:最新初中数学【素材一】利用类比,解决问题.pdf
留言与评论(共有 0 条评论) |