2024年2月19日发(作者:公务用车管理办法)
梦想不会辜负每一个努力的人2016年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.(3分)若代数式A.x<3在实数范围内有意义,则实数x的取值范围是()B.x>3C.x≠3D.x=3)3.(3分)下列计算中正确的是(A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a44.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是(A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球))5.(3分)运用乘法公式计算(x+3)2的结果是(A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+96.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是(A.a=5,b=1)B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣1)7.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是(A.日加工零件数人数B.4C.56D.788.(3分)某车间20名工人日加工零件数如表所示:265第1页(共21页)43
梦想不会辜负每一个努力的人这些工人日加工零件数的众数、中位数、平均数分别是(A.5、6、5B.5、5、6C.6、5、6D.5、6、69.(3分)如图,在等腰Rt△ABC中,AC=BC=2),点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.πB.πC.2D.210.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(A.5B.6C.7D.8)二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为.12.(3分)某市2016年初中毕业生人数约为63000,数63000用科学记数法表示为.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.,16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5第2页(共21页)
梦想不会辜负每一个努力的人则BD的长为.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了名学生,其中最喜爱戏曲的有.人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;第3页(共21页)
梦想不会辜负每一个努力的人(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品甲乙每件售价(万元)620每件成本(万元)a10每年其他费用(万元)2040+0.05x2每年最大产销量(件)20080其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;第4页(共21页)
梦想不会辜负每一个努力的人(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.第5页(共21页)
梦想不会辜负每一个努力的人2016年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2016•武汉)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【解答】解:∵1<∴实数<2,的值在:1和2之间.故选:B.2.(3分)(2016•武汉)若代数式围是(A.x<3)B.x>3C.x≠3D.x=3在实数范围内有意义,则实数x的取值范【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.(3分)(2016•武汉)下列计算中正确的是(A.a•a2=a2B.2a•a=2a2)C.(2a2)2=2a4D.6a8÷3a2=2a4【解答】解:A、原式=a3,错误;B、原式=2a2,正确;C、原式=4a4,错误;D、原式=2a6,错误,故选B4.(3分)(2016•武汉)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()第6页(共21页)
梦想不会辜负每一个努力的人A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.5.(3分)(2016•武汉)运用乘法公式计算(x+3)2的结果是(A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+9)【解答】解:(x+3)2=x2+6x+9,故选:C.6.(3分)(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是(A.a=5,b=1)B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣1【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选D.7.(3分)(2016•武汉)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.故选:A.B.C.D.【解答】解:从左面可看到一个长方形和上面一个长方形.第7页(共21页)
梦想不会辜负每一个努力的人8.(3分)(2016•武汉)某车间20名工人日加工零件数如表所示:日加工零件数人数26543)45678这些工人日加工零件数的众数、中位数、平均数分别是(A.5、6、5B.5、5、6C.6、5、6D.5、6、6【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是平均数是:故选D.=6;=6;9.(3分)(2016•武汉)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.πB.πC.2D.2【解答】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2∴AB=BC=4,,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,第8页(共21页)
梦想不会辜负每一个努力的人∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•1=π.故选B.10.(3分)(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(A.5B.6C.7D.8)【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选A二、填空题(本大题共6个小题,每小题3分,共18分)第9页(共21页)
梦想不会辜负每一个努力的人11.(3分)(2016•武汉)计算5+(﹣3)的结果为【解答】解:原式=+(5﹣3)=2,故答案为:2.2.12.(3分)(2016•武汉)某市2016年初中毕业生人数约为63000,数63000用科学记数法表示为6.3×104.【解答】解:将63000用科学记数法表示为6.3×104.故答案为:6.3×104.13.(3分)(2016•武汉)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.【解答】解:∵一个质地均匀的小正方体由6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.14.(3分)(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.第10页(共21页)
梦想不会辜负每一个努力的人15.(3分)(2016•武汉)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为≤b≤﹣2.﹣4【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣∴﹣<x<,;∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为﹣4≤b≤﹣2.16.(3分)(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,第11页(共21页)
梦想不会辜负每一个努力的人∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD=故答案为:2=.=2,三、解答题(共8题,共72分)17.(8分)(2016•武汉)解方程:5x+2=3(x+2)【解答】解:去括号得:5x+2=3x+6,移项合并得:2x=4,解得:x=2.18.(8分)(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【解答】证明:∵BE=CF,第12页(共21页)
梦想不会辜负每一个努力的人∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.19.(8分)(2016•武汉)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了50名学生,其中最喜爱戏曲的有72°.3人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%,∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;故答案为:50,3,72°.(2)2000×8%=160(人),第13页(共21页)
梦想不会辜负每一个努力的人答:估计该校2000名学生中最喜爱新闻的人数约有160人.20.(8分)(2016•武汉)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.【解答】解:(1)解得kx2+4x﹣4=0,∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,∴△=16+16k=0,∴k=﹣1;(2)如图所示,C1平移至C2处所扫过的面积=2×3=6.21.(8分)(2016•武汉)如图,点C在以AB为直径的⊙O上,AD与过点C的第14页(共21页)
梦想不会辜负每一个努力的人切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:连接BE、BC、OC,BE交AC于F交OC于H.第15页(共21页)
梦想不会辜负每一个努力的人∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==∵cos∠CAB==∴AB=a,BC=,设AD=4a,AC=5a,则DC=EH=HB=3a,,a,=a,=a,在RT△CHB中,CH=∴DE=CH=a,AE=∵EF∥CD,∴==.22.(10分)(2016•武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品甲乙每件售价(万元)620每件成本(万元)a10每年其他费用(万元)2040+0.05x2每年最大产销量(件)20080其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2第16页(共21页)
梦想不会辜负每一个努力的人与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①(1180﹣200a)=440,解得a=3.7,②(1180﹣200a)>440,解得a<3.7,③(1180﹣200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.23.(10分)(2016•武汉)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【解答】解:(1)∵∠ACP=∠B,∠A=∠A,第17页(共21页)
梦想不会辜负每一个努力的人∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴即∴x=∵AB=3,∴AP=3﹣∴PB=;,,,,②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=∵CE2=(,HE=+x,+x)2,+(∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,第18页(共21页)
梦想不会辜负每一个努力的人∴CE2=EP•EA,∴3+3+x2+2∴x=∴PB=﹣1,﹣1.x=2x(x++1),24.(12分)(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得第19页(共21页)
梦想不会辜负每一个努力的人,解得,抛物线的解析式为y=x2﹣②如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,;D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);当点D在OP右侧时,延长PD交x轴于点G.作PH⊥OB于点H,则OH=1,PH=3.∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣1.在Rt△PGH中,由x2=(x﹣1)2+32,得x=5.∴点G(5,0).∴直线PG的解析式为y=x﹣解方程组得,.∵P(1,﹣3),∴D(,﹣).,﹣).∴点D的坐标为(﹣1,﹣3)或((2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.第20页(共21页)
∵PQ∥OF,∴,∴OF==﹣=同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.梦想不会辜负每一个努力的人=amt+at2.第21页(共21页)
本文发布于:2024-02-19 22:11:23,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1708351883250099.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:中学生世界答案官网.doc
本文 PDF 下载地址:中学生世界答案官网.pdf
留言与评论(共有 0 条评论) |