证明勾股定理的4种方法

更新时间:2024-02-15 19:28:52 阅读: 评论:0

2024年2月15日发(作者:运动广播稿)

证明勾股定理的4种方法

证明勾股定理的4种方法

2022-01-27

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。以下是小编整理的证明勾股定理的4种方法,仅供参考,大家一起来看看吧。

证明勾股定理的4种方法

勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a^2;+b^2;=c^2;这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^2;+b^2;=c^2;。在中国数学史中同样源远流长,是中算的重中之重。《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦。”

勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的'定理之一。下面我们一起来欣赏其中一些证明方法:

方法一:赵爽“弦图”

三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明。

2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。

方法二:刘徽“青朱出入图”

约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。

方法三:欧几里得“公理化证明”

希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。

1955年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发行了一张邮票,图案是由三个棋盘排列而成。

方法四:毕达哥拉斯“拼图”

毕达哥拉斯(公元前572—前497年),古希腊著名的哲学家、数学家、天文学家.

将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞。则图1和图2中的白色部分面积必定相等,所以c的平方=a的平方+b的平方

方法五:达·芬奇的证明

达·芬奇,意大利人,欧洲文艺复兴时期的著名画家。主要作品《自画像》《岩间圣母》《蒙娜丽莎》等

方法六:五巧板“拼图”

利用两幅五巧板,拼成一个以c为边长的正方形和两个边长分别为a、b的正方形

方法七:在印度、阿拉伯和欧洲出现的拼图证明

做法是将一条垂直线和一条水平线,将较大直角边的正方形分成4分。之后依照图中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。

方法八:加菲尔德“总统证明法”

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,

就把这一证法称为“总统”证法。

证明勾股定理的4种方法

本文发布于:2024-02-15 19:28:51,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1707996532142140.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:证明勾股定理的4种方法.doc

本文 PDF 下载地址:证明勾股定理的4种方法.pdf

标签:证明   勾股定理   方法   定理   直角   数学家
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|