2023年12月10日发(作者:教师节文案)
傅立叶变换红外光谱仪
曹文芳 1014061420
一、仪器结构
傅立叶变换红外光谱仪的工作原理图
固定平面镜、分光器和可调凹面镜组成傅立叶变换红外光谱仪的核心部件-迈克尔干涉仪。由光源发出的红外光经过固定平面镜反射镜后,由分光器分为两束:50%的光透射到可调凹面镜,另外50%的光反射到固定平面镜。
可调凹面镜移动至两束光光程差为半波长的偶数倍时,这两束光发生相长干涉,干涉图由红外检测器获得,经过计算机傅立叶变换处理后得到红外光谱图。
IRPresting-21型傅立叶变换红外光谱仪具300入射迈克尔逊密闭型干涉仪,单光束光学系统,空冷陶瓷光源,镀锗KBr基片分束器,温度可调的DLATGS检测器,波数范围7,800~350cm-1,S/N大于40,000∶1(4 cm-1,1分钟,2,100 cm-1附近,P—P),具有自诊断功能和状态监控器。可收集中红外、近红外、远红外范围光谱。
二、实验原理
原理概述:红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。
一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。
三、操作步骤
1 、开机前准备
开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温为21±5℃左右,湿度≤65%时才能开机。
2、开机
始终保持红外光谱仪右下侧黄色灯亮(除湿器指示灯);开机时,首先打开右下侧仪器电源开关,此时绿灯亮,稳定半小时,使得仪器能量达到最佳状态。开启电脑,点击用户名Administrator,输入密码,并运行仪器操作平台IRsolution软件,status栏显示仪器自检,约十几秒后窗口右方出现4个绿色方块,自检完成,表示仪器正常,可以开始使用。
3 、制样
固体样品(溴化钾压片法):取预先烘干的固体样品1~1.5 mg与KBr 200~300 mg(样品与KBr的比约为1:200)于玛瑙研钵中,研磨成混合均匀的粉末(粒度小于2微米)。如果KBr和固体样品不够干燥,研磨时要用红外灯烘干。用小药匙转入制片模具中,于油压机6~8吨压力下保持约5分钟,撤去压力后取出制成的半透明薄片,装入样品架。
液体样品(液膜法):取两片氯化钠盐片,用洁净的棉球沾少许溶剂将表面擦干净,待溶剂挥发后,滴一小滴试样在盐片上,将另一盐片压在上面,使试样均匀铺散在盐片中间形成液膜,中间不能有气泡。然后将其装入可拆式夜池架中,轻轻用螺丝固定好,插入仪器试样池中测绘谱图。 4.扫描和输出红外光谱图
测试红外光谱图时,先在measure模式下按BKG键扫描背景(用KBr片做背景),一般背景信号强度在80%以上,否则能量太低,样品信号噪音大;在Comment栏中输入备注,在Data file中选择样品谱图存储路径(E盘个人文件夹),按sample键扫描样品信号,得到样品红外光谱图;根据需要保存红外光谱图,或者导出ASC码文本文档,或打印。
5.关机
(1)关机时,先关闭IRsolution软件,关闭电脑主机,再关闭光谱仪电源,盖上仪器防尘罩。
(2)在记录本记录使用情况。
6.注意事项
(1)保持实验室整洁和干燥,不得在实验室内进行样品化学处理,实验完毕即取出样品。
(2)样品室窗门应轻开轻关,避免仪器振动受损。
(3)眼睛不要注视激光光源,以免受伤害。
(4)实验操作中,避免用手直接接触锭剂成型器表面,以防样品受潮,无法制样;要用镊子从锭剂成型器中取出压好的薄片,而不能用手拿,以免玷污薄片。
(5)固体样品压片法时,试样量必须合适。试样量过多,试样晶片太“厚”,透光率差,导致收集到的谱图中强峰超出检测范围;试样量太少,晶片太“薄”,收集到的谱图信号信噪比差。
(6)液体样品测定时,可拆式液体池的盐片应保持透明干燥,切不可用手接触盐片表面;盐片不能用水冲洗。以试样溶于有机溶剂,制成1~10%浓度的溶液,注入适宜厚度的液体池中测定;常用溶剂有二氯甲烷、四氯化碳、三氯甲烷、二硫化碳、己烷及环己烷等,不可用水做试样溶剂;使用完后,用相应溶剂立即将液体池清洗干净。
(7)压片机下未放压片模具时,不能进行压杆操作,避免超出可操作范围。
(8)压片完成后将试样配件,特别是压片模具擦拭干净,必要时用乙醇或水清洗干净并擦干,置干燥器中保存,以免锈蚀。 (9)不得随意改变软件参数。
(10)本仪器由专人保管,使用人员在上机前必须经过培训,待考核通过后,方可上机使用。
四、发展与应用
傅立叶变换红外光谱仪是20世纪70年代发展起来的新一代红外光谱仪,红外光谱仪的发展经历了3个阶段:第一阶段是棱镜式红外分光光度计,它是基于棱镜对红外辐射的色散而实现分光的,其缺点是光学材料制造麻烦 ,分辨本领较低 ,而且仪器要求严格的恒温降湿;第二阶段是光栅式红外分光光度计,它是基于光栅的衍射而实现分光的,与第一代相比.分辨能力大大提高,且能量较高,价格便宜,对恒温、恒湿要求不高,是红外分光光度计发展的方向;第三阶段是基于干涉调频分光的傅立叶变换红外光谱仪,它的出现为红外光谱的应用开辟了新的领域。
红外光谱仪具有以下特点:一是扫描速度快,可以在1s内测得多张红外谱图;二是光通量大,可以检测透射较低的样品,可以检测气体、固体、液体、薄膜和金属镀层等不同样品;三是分辨率高,便于观察气态分子的精细结构;四是测定光谱范围宽,只要改变光源、分束器和检测器的配置,就可以得到整个红外区的光谱。
红外及拉曼光谱都是分子振动光谱。通过谱图解析可以获取分子结构的信息。任何气态、液态、固态样品均可进行红外光谱测定,这是其它仪器分析方法难以做到的。由于每种化合物均有红外吸收,尤其是有机化合物的红外光谱能提供丰富的结构信息,因此红外光谱法是有机化合物结构解析的重要手段之一。因此红外光谱仪广泛应用于有机化学、高分子化学、无机化学、化工、催化、石油、材料、生物、医药、环境等领域。
紫外-可见分光光度计
一、仪器的类型和基本组成部分
1.仪器的分类
紫外-可见分光光度计按使用波长范围可分为:可见分光光度计和紫外-可见分光光 度计两类(统称为分光光度计)。前者的使用波长范围是 400~780 nm;后者的使用波长范围为200~1000 nm。可见分光光度计只能用于测量有色溶液的吸光度,而紫外-可见分光光度计可测量在紫外、可见及近红外光区有吸收的物质的吸光度。紫外-可见分光度计按光路可分为单光束式及双光束式两类;按测量时提供的波长数又可分为单波长分光光度计和双波长分光光度计两类。
2.仪器的基本组成部分
目前,紫外-可见分光光度计的型号较多,但它们的基本构造都相似,都由光源、单色器、样品吸收池、检测器和信号显示系统等五大部件组成,其组成框图见图 2-1 。
由光源发出的光,经单色器获得一定波长单色光照射到样品溶液,被吸收后,经检测器将光强度变化转变为电信号变化,并经信号指示系统调制放大后,显示或打印出吸光度 A(或透射比 τ),完成测定。
(1)光源 光源是提供入射光的装置。可见光区常用的光源为钨灯,可用的波长范围为 350~1000 nm;紫外光区常用的光源为氢灯或氘灯(其中氘灯的辐射强度大,稳定性好,寿命长,因此近年生产的仪器多使用氘灯) ,它们发射的连续波长范围为180~360 nm。
(2)单色器 单色器是将光源辐射的复合光分成单色光的光学装置。单色器一般由狭缝、色散元件及透镜系统组成,其中色散元件是单色器的关键部件。最常用的色散元件是棱镜和光栅(现在的商品仪器几乎都使用光栅) 。
(3)吸收池 吸收池是用于盛装被测量溶液的装置。一般可见光区使用玻璃吸收池,紫外光区使用石英吸收池。紫外-可见分光光度计常用的吸收池规格有:0.5 cm、1.0 cm、2.0 cm、3.0 cm、5.0 cm等,使用时,根据实际需要选择。
(4)检测器 检测器是将光信号转变为电信号的装置。常用的检测器有硒光电池、光电管、光电倍增管和光电二极管阵列检测器。硒光电池结构简单,价格便宜,但长时间曝光易“疲劳”,灵敏度也不高。光电管的灵敏度比硒光电池高。光电倍增管不仅灵敏度比普通光电管灵敏,而且响应速度快,是目前高、中档分光光度计中最常用的一种检测器。光电二极管阵列检测器是紫外-可见光度检测器的一个重要进展,它具有极快的扫描速度,可得到三维光谱图。
(5)信号显示器 信号显示器是将检测器输出的信号放大并显示出来的装置。常用的装置有电表指示、图表指示及数字显示等。现在很多紫外-可见分光光度计都装有微处理机,一方面将信号记录和处理,另一方面可对分光光度计进行操作控制。
二、仪器工作原理
物质的紫外-可见光谱直接地反映了物质分子的电子跃迁,与物质的结构直接相关,不同的物质其紫外-可见吸收光谱不同。而吸收强弱又与吸光物质的量有关。因此可以由物质光谱的特异性对物质进行定性分析,并根据吸收强度对物质作定量测试。在一定的条件下,吸光物质对单色光的吸收符合朗伯-比尔定律,即
A=εbc
上式中 A 为吸光度;b 为光程长度(即吸收池厚度),单位为 cm;c 为吸光物质的物质的量浓度,单位为 mol/L;ε为摩尔吸光系数,单位为 L/(mol∙cm);由上式可知,当 b、ε 一定时,吸光物质的吸光度为其浓度 c 的单值(线性)函数。因此对吸光物质的浓度的测试可直接归结为对吸光度 A的测试。
三、UV-3600紫外分光光度计基本操作步骤
1.
2.
3.
4.
5.
首先打开紫外分光光度计的电源,然后再打开计算机的电源。
双击桌面上的“UVProbe”快捷键,进入主菜单。
单击菜单中下部“Connect”图标,紫外分光光度计开始自检。
待所有自检项目结束(各项自检条目均亮绿灯)后,单击“OK”图标。
于仪器检测室内放入盛有相同检测媒介(不含样品)的对比池(靠内)和样品池(靠外), 单击“Baline”图标进行背景扫描。
6. 待背景扫描结束后,取出样品池,加入待检测样品,然后放回检测室,单击“Auto Zero”图标进行调零。
7.
8.
待调零结束后,单击“Start”图标开始扫描。
扫描结束后,屏幕会跳出“New Data Set”对话框,请在“File”栏自己建立路径和文档名,然后单击“OK”图标。接着单击菜单左上角的“Save”图标,最终完成文件的存储。如要转换成ASCII码文件,请单击菜单左上角的“File”图标,然后在其下拉菜单中单击“”图标,跳出“Save
Spectrum File”对话框,单击“保存类型(T)”栏,并在其下拉菜单中选择“Data
Print Table(*.txt)”这一栏,自己给此文件建立路径和名字后,单击“保存(s)”键即完成ASCII码文件的转换工作。
9. 取出样品池,经处理后进行下一次实验。
10. 多次测样时,若检测媒介未变,请重复6-9操作步骤;若检测媒介已变,请重复5-9操作步骤。
11. 测样结束后,先关掉此软件,然后关掉计算机电源,最后关掉紫外分光光度计电源。若该计算机另有它用,可同时按住[Alt]+[F4]键,然后按[Enter]键结束程序后再关掉紫外分光光度计电源。
12. 实验结束后,用重铬酸钾洗液浸泡样品池两分钟,接着用去离子水洗涤干净,然后用分析纯丙酮洗涤,在室温下吹干后放入池盒中,以方便下一次实验的进行。
PL荧光分光光度计
一、仪器结构
由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。基本结构和原理如图所示。
①光源
光源应具有强度大、适用波长范围宽两大特点,常用光源有高压汞灯、氙灯、氙一汞弧灯等。此外,紫外激光器、固体激光器、高功率连续可调染料激光器和二极管激光器等荧光光源把荧光法的应用范围拓宽。
②滤光片和单色器
在荧光光度计中,通常采用干涉滤光片和吸收滤光片作为激发光束和荧光辐射的波长选择器。在荧光分光光度计中至少选用一个,而常常是用两个光栅单色器,且均带有可调狭缝,以供选择合适的通带。理想的单色器应在整个波长区内有相同的光子通过效率,不幸的是这种理想的单色器不存在。
③ 检测器
一般普通的荧光分光光度计均采用光电倍增管作为检测器。它是很好的电流源,在一定条件下其电流量与人射光强度成正比。此外,还有光导摄像管、电子微分器、电荷耦合器阵列检测器。
④ 显示装置
以前,显示装置有数字电压表,记录仪和阴极示波器等,现在,人们可以通过计算机软硬件技术根据不同要求,来选择不同的直观的视频读出方式。
二、荧光分光光度计的工作原理
物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光。不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱;,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。
三、 荧光分光光度计简介
荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。其能提供包括激发光谱、发射光谱以及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数,从各个角度反映了分子的成键和结构情况。通过对这些参数的测定, 不但可以做一般的定量分析,而且还可以推断分子在各种环境下的构象变化,从而阐明分子结构与功能之间的关系。荧光分光光度计的激发波长扫描范围一般是190~650nm,发射波长扫描范围是200~800nm。可用于液体、固体样品(如凝胶条)的光谱扫描。目前荧光分析法广泛应用于生化、化学、药物分析、食品检验、地理、冶金、医学、环境科学和生命科学研究等各个领域。荧光仪器是用来测定荧光物质的性质和含量的分析仪器,通常分两大类:荧光光度计和荧光分光光度计。荧光分光光度计技术在现代科学的发展中正显示出独特的作用,越来越得到人们的重视。
四、操作步骤
仪器设备名称:荧光分光光度计
型 号:RF-5301PC型
国 别 厂 家:日本岛津公司
技术指标:
波长扫描范围:220-900nm
波长精度:±1.5nm;
狭缝范围:0.15-20nm
信噪比:S/N比150以上(水拉曼峰测定,狭缝5nm)
最高扫描速度:5,500nm/min
1开机
a. 确认所测试样液体或固体,选择相应的附件。
b. 先开启仪器主机电源,预热半小时后启动电脑程序RF-530XPC,仪器自检通过后,即可正常使用。
2测样
(1) spectrum模式
a. 在“Acquire Mode”中选择“Spectrum”模式。
对于做荧光光谱的样品,“Configure”中“Parameters”的参数设置如下:
“Spectrum Type”中选择Emission;给定EX波长;给定EM的扫描范围(最大范围220nm—900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”完成参数的设定。 对于做激发光谱的样品,“Configure”中“Parameters”的参数设置如下:
“Spectrum Type”中选择Excitation;给定EM波长;给定EX的扫描范围(最大范围220nm—900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”,完成参数的设定。
b. 在样品池中放入待测的溶液,点击“Start”,即可开始扫描。
c. 扫描结束后,系统提示保存文件。可在“Prentation”中选择“Graf” “Radar”
“Both Axes Ctrl+R”来调整显示结果范围;在“Manipulate” 中选择“Peak
Pick”来标出峰位,最后在“Channel”中进行通道设定。
d. 述操作步骤对固体样品同样适用。
(2) Quantitative模式
a. 在“Acquire Mode”中选择“Quantitative”模式。
b. “Configure”中“Parameters”的参数设置如下:
Method 选择“Multi Point Working Curve” ;“Order of Curve” 中选择 “1st和“No” ;给定EX、EM波长;设定狭缝宽度,点击“OK”,完成参数的设定。
c. 在样品池中放入装有空白溶液的比色皿后执行“Auto Zero” 命令校零点。
d. 点击“Standard”模式,制作工作曲线。
e. 将样品池中的空白溶液换成一系列的已知浓度的样品标准溶液进行测量,执行“Read”命令,得到相应的荧光强度,系统根据测量值自动生成一条“荧光强度-浓度”曲线。
f. 在“Prentation” 中选择“Display Equation”,得到标准方程。将此工作曲线 “Save”为扩展名为“.std”的文件。
g. 工作曲线制备完毕,即可进入未知样的测量,选择进入“Unknown”模式,将样品池中的已知浓度标准溶液换成待测样品溶液,执行“Read”命令,即可得到相应的荧光强度和相应的浓度。将此 “Save”为扩展名为“.qnt”的文件。
(3) Time Cour模式
a. 在“Acquire Mode”中选择“Time Cour”模式。
b. “Configure”中“Parameters”的参数设置如下: 给定EX、EM波长;设定狭缝宽度;设定反应时间;读取速度;读取点数;
点击“OK”,完成参数的设定。
c. 在样品池中放入装有空白溶液的比色皿后执行“Auto Zero” 命令校零点。
d. 将样品池中的空白溶液换成待测溶液,点击“Start”,即可开始扫描。扫描结束后,即可得到荧光强度对时间的工作曲线。
e. 将此工作曲线“Save”为扩展名为“.TMC”的文件。
3. 关机
退出软件后关毕主机。
本文发布于:2023-12-10 07:45:24,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1702165525116983.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:仪器分析作业:荧光、紫外、红外.doc
本文 PDF 下载地址:仪器分析作业:荧光、紫外、红外.pdf
留言与评论(共有 0 条评论) |