2023年12月4日发(作者:飞蝴蝶)
波音787飞机生产所体现的先进制造技术
波音787复材机身段的制造技术
碳纤维合成技术已有数十年的历史,自20世纪80年代以来,广泛应用于试验飞行和军事航空领域。不过,波音787是第一种主要采用碳纤维材料制造的商业客机:70%机体使用合成材料制造。碳纤维丝被植入树脂中,然后将一层层的碳纤维夹在别的材料之间,以便令碳纤维丝处于不同方位。利用这种技术制造的材料既轻又坚硬——强度至少是钢材的四倍。
金属机身一般由长方形金属板构成,然后用成千上万个铆钉固定,使用合成材料,整个机身的管状截面可以作为整体制造出来——基本上是在一个巨型炉子(称为高压釜)烧制碳合成材料。接着,只要通过更少的扣件就能将更少的部件固定。这使得波音公司可以重新考虑整个制造过程。波音不是像以前那样,将机身结构组装完毕,然后再安装所有的布线、管线和其他机载系统,而是将机身整个部分外包,造好以后再在埃弗雷特进行组装。
由于复合材料结构有着许多众所周知的优点,在对复材结构做了大量成功的研究试验基础上,波音公司决定787机体主要结构大规模地采用复合材料。由777飞机复材用量的12%一步跨越到50%,即机身和机翼壳体几乎都由碳纤维增强。
由于复合材料结构有着许多众所周知的优点,在对复材结构做了大量成功的研究试验基础上,波音公司决定787机体主要结构大规模地采用复合材料。由777飞机复材用量的12%一步跨越到50%,即机身和机翼壳体几乎都由碳纤维增强复合材料制成,仅少数机体部位应用铝合金或其他材料。而空客公司原来的A350设计方案是在A330飞机基础上进行的,机身仍是以铝合金的铆接结构为主,复材用量仅为35%,这样,波音787就大幅度地拉大与A350复材用量的差距。
对于波音的竞争对手空客公司来说,客机的超大型机身复材部件的制造技术是一个难于逾越的巨大挑战。这种由复材组成机身的787客机,是全球第一款利用高科技碳纤维复合材料打造的客机,机身段省去1500块铝合金钣料零件和4~5万个连接件,使机体结构件尺寸变小,但更轻盈坚固。它的维修成本可节省30%,飞行的舒适性有很大提高,得到很多航空公司的欢迎。因此,国际上各航空公司期望着这一“绿色”客机能给空中旅行带来革命性的变化。
全球化协同工程化787客机
过去,波音标准的研制方法是在公司内设计好飞机,然后把飞机的零部件或一整段机体的图纸送到它们制造伙伴的工厂去生产。而这次在研制787客机中,波音彻底地改变了研制方法,也改变了研制流程,它利用达索公司的PLM套件创建的全球协同平台GCE,与合作伙伴协同研制787 客机。最重要的是,全世界大约6000余名工程师联合起来共同设计和工程化787客机。波音787机体分段研制的工程化情况:合作伙伴包括意大利的阿里尼亚(Alenia)航空制造公司,负责研制机身44和46段;日本的富士重工(FHI) 负责研制机翼翼盒12段、川崎重工(KHI) 负责研制主起落架舱45段和机身43段、以及三菱重工(Mitsubishi)负责研制中央翼盒11段(如图1);北美的古得里奇公司负责制造发动机短 舱和反向装置;美国的Spirit 公司负责制造机头41段,美国沃特(Vought)公司负责研制机身47段和48段;以及全球航空制造公司负责47段和48段对接装配等,如图2 所示。最后,波音公司利用747-400改装的超大型运输机LCA运输787部件,负责把世界各地制造的十几个大部件,运到波音进行对接总装、试飞和最后的交付工作。
部件壳体的制造过程
现以787客机机头41段部件为例,说明其制造和装配的过程。
41段部件的制造。首先构建复材部件壁板(包括长桁)的成型模具(型胎),这型胎是组合式的,便于装拆。其上有长桁内槽,先把预制好的复材长桁放到内槽里,然后进行缠绕操作,再进入固化炉成型。成型后再进行切边钻孔等机械加工,最后喷漆。
787的不同复材机身段在缠绕机上正在进行缠绕的成形过程。复材部件固化炉直径达10米,长度24米。由于已固化好的机身段内部结构件仅有长桁,不足以维持它的外形,所示其内部用工装临时支撑。
复材部件的数字化钻孔和连接装配技术
上面仅把复材蒙皮和长桁胶接固化在一起,还需要把机身隔框等零件连接装配上。在复材部件装配中,一般采用机械连接方法,将复合材料构件或金属零件与机身壳体装配在一起形成部件。由于复合材料构件的特殊性,它的连接方法与金属零件的装配方法有所不同。
787客机机身大部段壳体的框基本上都是复合材料。考虑到复材机体结构的特殊性,钻孔时材料层间容易劈裂,而且又不适宜敲打,所以它们的连接不能用一般的铆接技术;另一方面,考虑到787 客机的生产批量大,数量巨大的孔需要钻制,为此波音和合作伙伴研制了专用的数字化钻孔铆接设备和相关的工艺技术,以此确保787客机的装配连接。
由于机身部件由不同公司负责设计和制造,机身部件的结构也不一样,所用的技术和装备也有所不同。美国Spirit公司针对机头41段的“锥形”结构应用数字化龙门式机械手进行铆接装配。美国沃特公司负责的47和48段应用龙门柱式数字化铆接装配机,而日本名古屋的川崎重工采用独立柱式数字化铆接机械。
这里着重说明在日本名古屋的川崎重工负责设计和制造波音787的机身43段的情况。
川崎重工的独立柱式数字化铆接机械
位于日本名古屋的川崎重工负责设计和制造波音787的机身43段,它和其他机身段一样, 是由单块筒体复材结构组成机身段的,这对制造和装配工作提出了挑战。若采用传统方法,则自动化铆接机的直径要达6米,将是十分庞大而笨重的机械,势必导致工作效率低下,精确度难以保证。川崎重工则另辟新路,应用电磁铆接技术,它由两个独立的较小的柱式机器组成,这样减小了它的整个外形轮廓,以便提供较快的铆接速度、较高的可靠性和铆接精度。所以,优化铆接机械的轮廓大小和使用电磁铆接技术EMR 是达到在要求的定位精度下保证可靠的连接过程的关键。
川崎重工需要用来在固化后的机身43段内部铆接框一类结构件的自动化装配工作站。由于铆接单块筒体OPB复材结构机身段需要铆接机械具有两个工作头,即在OPB的里外两侧各有一个铆接工作头才能完成铆接工作。对于这样的自动化铆接装备的制造者来说,在技术上有几个新的挑战,也即关键技术如下。
(1)对连接过程力的考虑。在铆接过程中,机身的单块筒体OPB两侧的工作头之间产生作用力才能完成铆接,如图6 装配工作站所示。对于一定直径的连接件需要作用力达3000kg。在这样作用力的情况下,还需保持单块筒体OPB两侧的铆接工作头的精确对准。而连接件的准确定位常常受到工作空间的限制,这是由于单块筒体OPB内部空间狭窄或有障碍物,导致铆接工作头难以到达。铆接作用力的大小取决于连接件的类型。
(2)连接件类型。通常机身上有几种连接件:螺栓/套环的组合、螺栓/螺帽的组合以及单面铆接件。对于787机身段而言,成本、重量和容易安装是波音选择连接件类型的主要考虑因素。基于这些因素,川崎重工选择了螺栓/钛合金套环的组合。但就这一装配单元来说,容易安装对于制造业者是最关键的因素。
(3)工作空间。考虑到机身筒体、支持工装和自动导航车以及铆接机械工作头的位置等,其工作空间需要直径6m、长16m的范围。因此,在保证铆接工作能顺利进行的情况下,减少工作头定位的工作空间是一个主要目标。另外,由于单块筒体OPB复材结构机身段的原因,机体两边的铆接机械不能安置在同一基座上,两边的基座有很大的差异,导致要采取复杂的补偿技术。所以整个装置的重量要轻是十分重要的。
(4)准确性。连接件在机身筒体上的位置准确性涉及到连接强度和合理的间隙问题。所以连接件必须在各种变化条件(温度、基座等情况)下以紧公差定位。筒体壁两边的工作头对准的准确度关系到套环能否可靠地安置到螺栓上。这就要求两边独立的导轨系统保持很好的对准关系,所以补偿系统起着重要作用。从图6可以明显的看出,里外两个工作机构是完全 独立的,这给控制系统带来较大的困难。还要特别关注的是控制热效应,这是由于在工作过程中机身筒体的里外两侧工作条件不一样所引起的。川崎在名古屋的工厂保持着相对大的温度范围:0~40℃。
(5)控制系统。控制系统结构是主要影响到能否维护铆接工作站性能的因素。一个CNC 控制装置负责处理定位和两个里外工作头的循环操作。高性能的CNC伺服功能很大程度上增强了系统的准确度。
(6)可靠的套环输送工装。随后,与自动铆接装备有关的最有意义的是套环输送问题。套环输送系统包括套环从散装阶段送到铆接机械的工作头处,再把套环加载到工作头的工装上,最后套环通过工装套到螺栓的尾部。期望的可靠性是千分之一,即输送1000个套环仅有一个未准确地套到螺栓上。所以这不仅要求整个铆接系统的精度要高,而且套环输送系统本身也要很准确。
上述6个关键技术中,采用钛合金套环挤压到高锁螺栓(套环/螺栓组合)上和准确度是最重要的,这也是应用电磁铆接技术EMR的原因。这一方法将具有间距最好、重量轻、成本低和可用性好等优点。这种柱式铆接机械的铆接头是偏心式的,即其钻孔和铆接机构的转轴与它的柱式铆接机械的工作头的转轴中心偏移一个距离,这样便于它到工作空间狭窄的地方进行钻孔和铆接,这也是柱式铆接机械的一大特点,其长度为22m,精度达0.33mm。因此,它很好地完成了787机身43 段的铆接工作。
在787段机身的制造和装配工作过程中,无论是搬运、胶接,还是喷漆等工作,都需要专用工装。
“架外”铆接装配工作上述仅完成了此部件的复材机身的壳体制造工作,里面还需安装机身的各种支架、角片和仪表板等其他组件,需要机身段从数字化钻铆装配机械上“下架”后进行,如图8所示,为41段部件的装配和安装过程。图中的上两图所示是有一个机械臂在内部进行自动化的钻铆工作,以及工人在对部件结构作补充性的装配工作。图中下面两图所示是在部件壳体内安装了很多电缆及其接头,以及在部件中安装各种飞行仪表及相关航电设备。
从此也可明显看出,部件装配不仅完成了机体结构的安装工作,并且把此部件内的各种仪表、电缆和管路等航电设备的接口也都安装好,充分体现了模块化装配思想。
全复材机身段是波音公司研制787客机的突破性技术进展,是他们长期科研工作的结晶。从发展眼光来看,我国大型飞机的发展也要走这条道路,所以值得我们重视和研究。
用于波音787的新型复合材料机翼除冰系统
现代商业飞机的机翼除冰系统
空气动力学对飞机飞行的一个重要要求就是机翼表面必须非常光滑。机翼表面结一层冰就会产生不规则外形,而即使冰层只有1m m 厚也足够影响飞机的正常飞行。对于大型商业飞 机来说,飞机的正常飞行高度很高,而周围环境温度都在0℃以下,所以即时掌控机翼前缘的结冰情况对飞机的安全飞行十分重要。
对机翼结冰的处理分为两大类:防冰(防止结冰)和除冰(结冰后除去)。而后者是现在飞机上采用的主流技术,采用除冰系统在冰层没有达到有害厚度时除去。绝大多数除冰技术采用特殊物质(起飞前喷洒的化学物质)或机上携带的机械装置松动冰层,让流经机翼表面的气流将冰带走,从而达到除冰的目的。
在机械系统方面,现代商业飞机通常采用一系列管道从发动机内部引入加热的空气,通过加热空气在结冰机翼表面内侧的流动加热附近的机翼表面,从而达到除冰的目的。但是这不仅会使设计变得复杂,同时还会降低发动机的有效推力。所以,多年来研究人员一直在开发一种替代技术,即向机翼前缘表层里面置入导电元件来直接加热机翼表面,使冰层不会聚集变厚。设计这样一个系统的关键是能够开发一个加热盘、片或者加热元件来提供连续均匀的加热,而且能够在苛刻的环境中正常工作。同时要求该集成的加热系统在损坏或者出现故障时可以方便更换。目前,在技术上还不能满足以上条件,从而使该集成加热系统还没有成功应用于商用飞机的先例。
新型除冰系统的研制
1 喷涂金属导电层
英国G K N 宇航公司对加热元器件开展了多年研究,近年来针对客机上大量采用复合材料而开发出一套复合材料加热解决方案。该方案后来被波音公司选中,其首次商业应用是在787“梦幻”飞机机翼前缘除冰系统上。此外,该技术还具有军事用途,如可用在V -22“鱼鹰”倾转旋翼机发动机进气口和F-35“闪电I I”联合攻击机F135 普惠发动机的进气道上。
GKN 宇航公司的这种方案跟以前除冰系统的加热方法完全不一样,采用的是喷涂金属层沉积技术,即将液态金属直接喷涂到玻璃纤维织物上以形成导电层,通过产生的持续均匀的热量来加热复合材料机翼前缘。纤维织物上喷涂的金属层具有双重功效,既作为导电体导电,又作为电热元件产生热量,把电能直接转化为热能。通过该金属喷涂技术可以将金属层置入金属或者复合材料内部。目前,G K N 宇航公司为波音787 飞机制造的除冰系统就是应用这种技术将金属置入了碳纤维复合材料结构来制备加热垫。
2 除冰系统加热垫的制备
对波音787、V -22 和F -35 来说,G K N 宇航公司可以采用金属喷涂技术将金属材料置入加热垫中。这种加热垫是碳纤维和玻璃纤维的多层复合材料结构,其构件形状和尺寸大小主要依赖于飞机的机翼剖面和配电系统。G K N 宇航公司为波音787 飞机制造了8 个加热垫(附着在前缘缝翼上),每个机翼上有4 个。每个加热垫和前缘缝翼构成一个整体,是一个加热区域,每个前缘缝翼(即每个加热区域)又分为4 ~ 8 个加热面。通过加热垫上预先加工好的孔洞可将加热垫固定在前缘缝翼上。
无论用途如何,加热垫都是按相同的方法制造的, 只是其形状随着要附着结构外形的不同或者应用强度和结构要求的不同而有所变化。波音787 机翼前缘上使用的加热垫是在铝合金 阳模上铺设而成的,这样可以满足产品的耐久性要求。模具和其他部件都非常平直,在宽度方向上则严格满足波音公司指定的机翼前缘的空气动力学弯曲曲率要求。
加热垫原料为碳纤维/ 环氧预浸料(单向或者织物)。波音787 上加热垫采用的预浸带为机织物,内部有15 层,切割和装配基本采用全自动的切割系统。根据应用需要,加热垫的预浸带层数可以变化。在碳纤维预浸带的最上层铺一层干态的玻璃纤维织物,这层玻璃织物主要是在碳纤维和喷涂金属层之间起绝缘层作用,防止碳纤维和金属直接接触而发生电偶腐蚀。铺放玻璃纤维织物后,采用机械手将熔融金属直接喷涂到织物上,待冷却凝固。金属层厚度也是根据实际需要而不断变化的。总的来说,厚的金属层产生的电阻小,而薄的金属层产生的电阻大。
喷涂过程现在采用手动操作,但是为了提高效率和产品质量,G K N宇航公司正在积极开发自动操作系统。待金属层凝固成型后,再在上面焊接1 组电线来和飞机上的配电系统连接。在金属层上铺上一层干态玻璃纤维织物和15 层碳纤维/ 环氧树脂预浸带,加上平直盖板后送入真空热压罐中固化成型,而最终的形状以及与飞机机翼连接的孔洞都要经过数控加工。由于热压罐固化工艺存在能耗大等缺点,G K N 宇航公司也正在努力寻找性能优良且经济实惠的非热压罐固化预浸带,以采用非热压罐固化工艺。
该加热垫的一个显著特点就是模块化、标准化,这样每个加热垫都能够很容易地安装在波音787 的前缘缝翼上,并方便在损坏或者出现故障时拆换。而且将电源装置除去后,该加热垫看起来跟其他复合材料没有什么不同。
3 除冰系统的能源损耗
飞机上的电能非常有限,所以在能够达到相同效果的情况下应尽量采用低功率的设备来降低能耗。波音787 飞机上提供除冰服务时使用的加热垫就是显著的例子,该加热垫工作时温度范围为7.2 ~ 21.1℃,能量损耗只有45 ~ 75k W。而采用防冰系统时,则需要消耗150 ~200k W 的电能。波音787 上加热垫的电源控制系统由英国超级电子公司提供,且每个前缘缝翼配备1 个控制器。
金属喷涂技术在其他方面的应用
为满足不同需要,G K N 宇航公司可采用蜂窝夹芯材料来增加加热垫刚性,也可通过改变加热垫形状和金属层上下的碳纤维铺层的厚度来增加或者减少其强度。如提供给V -22 和F
-35 发动机进气道的加热垫的形状就与波音787 前缘缝翼上的不一样。此外,还可以将金属层放在层板叠层的任何位置,甚至包括表面层(直接暴露在气流中),或放在最里层。
GKN宇航公司的金属喷涂技术不仅仅在除冰装置上获得了成功,还可用于其他领域。如通过加热垫中信号传输的改变,该技术还可以监测结构健康,包括对压力、载荷、裂纹以及材料断裂等的监测,而用其他方法很难或者根本无法实现。
本文发布于:2023-12-04 03:38:19,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1701632299110119.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:波音787制造.doc
本文 PDF 下载地址:波音787制造.pdf
留言与评论(共有 0 条评论) |