PRL103,226801(2009)
SelectedforaViewpointinPhysics
PHYSICALREVIEWLETTERS
weekending
27NOVEMBER2009
TransitionbetweenElectronLocalizationandAntilocalizationinGraphene
F.V.Tikhonenko,A.A.Kozikov,A.K.Savchenko,andR.V.Gorbachev
SchoolofPhysics,UniversityofExeter,EX44QLExeter,UnitedKingdom
(Received16July2009;published23November2009)
Weshowthatquantuminterferenceingraphenecanresultinantilocalizationofchargecarriers—an
increaoftheconductance,whichisdetectedbyanegativemagnetoconductance.Wedemonstratethat
dependingonexperimentalconditionsonecanobrveeitherweaklocalizationorantilocalizationof
carriersingraphene.Atransitionfromlocalizationtoantilocalizationoccurswhenthecarrierdensityis
decreadandthetemperatureisincread.Weshowthatquantuminterferenceingraphenecansurviveat
hightemperatures,uptoT$200K,duetoweakelectron-phononscattering.
DOI:10.1103/PhysRevLett.103.226801PACSnumbers:73.23.Àb,,
Quantuminterferenceingraphene,amonolayerofcar-,butalsoonelastic
bonatoms,isverydifferentfromthatinconventionaltwo-
dimensional(2D)systemsduetochiralityofchargecar-
riersandanadditionalquantumnumber,thepudospin
[1,2].ThecarriersingraphenehaveaBerryphaof:the
additionalphathattheelectronwavefunctionwillac-
quireifanelectroncompletesaclodtrajectory.This
shouldresultinweakantilocalization(WAL)ofcharge
carrierscomparedwiththeconventionallocalization
(WL)in2Dsystems[3,4].
Figure1(a)showshowanelectronscatteredbyimpuri-
tiescaninterfereonaclodtrajectorywhenitistreatedas
awave.Twoelectronwavespropagateinoppositedirec-
tionsaroundthetrajectoryandinterfereatthepointof
intercept.Asthetwopathsareidentical,thephaofthe
twowavesisthesameandtheinterferenceconstructive.
Thisincreastheprobabilityforelectronstoscatterback
anddecreastheelectricalconductancecomparedwithits
classicalDrudevalue.Inexperiment,thequantumcorrec-
tiontotheconductanceisusuallydetectedbyapplyinga
magneticfieldperpendiculartothe2Dsystem.Itaddsa
phadifferencetothetwowavesanddestroystheinter-
ference.Thisresultsinanincreaoftheconductance—
positivemagnetoconductance(MC),ÁðBÞ¼ðBÞÀ
ðB¼0Þ>0.Ingraphene,however,theBerrypha
addsaphadifferencetothetwointerferingtrajectories,
sothattheymeetinantiphaanddestructiveinterference
occurs.Thisshouldresultinanincreaoftheconductance
duetoquantuminterferenceandanegativemagnetocon-
ductance[1].Thisantilocalizationeffectisverydifferent
fromthatobrvedbeforein2Dsystemswithstrongspin-
orbitscattering[3,5–8]wherethetwowavesmeetinanti-
phabecauofspinflipsinscatteringbyimpurities—in
graphenespin-orbitinteractionisknowntobeweakdueto
thelowmassofcarbonatoms[9].
Sofartheexperimentalstudiesofquantuminterference
ingraphene-badsystemshavenotrevealednegative
magnetoconductance[10–14],althoughtheobrved
weaklocalizationhasbeenentobeunusualinthatit
dependsnotonlyoninelasticscatteringofelectrons,char-
0031-9007=09=103(22)=226801(4)226801-1Ó2009TheAmericanPhysicalSociety
acterizedbythedephasingtime
scatteringcaudbyimpuritiesandimperfectionsinthe
crystalstructure.Weakantilocalizationwasexpectedtobe
enonlyinsampleswithoutdefects,i.e.,intheabnceof
intervalleyscatteringandchiralitybreakingscatteringby
atomicallysharpdefects.Inthisworkweprentclear
evidenceforWALingraphenebyobrvingnegative
MCatlowmagneticfields.Weestablishtheexperimental
conditionsforitsobrvationandshowthatinmechani-
callyexfoliatedgrapheneoneisabletodetectnegativeMC
evenintheprenceofsuchscattering.Wedemonstrate
thatinthesamesampleatransitionbetweenlocalization
andantilocalizationcanbeenbychangingtemperature
andelectrondensity.
Thetheory[1]ofquantuminterferencehasbeenshown
tobeapplicabletothedescriptionoftheMCinmechani-
callyexfoliatedgraphene[12]andagraphiticsystemon
thesurfaceofSiC[10]:
FIG.1(coloronline).(a)Thetrajectoriesofanelectronscat-
teredbyimpuritiesthatgiveritoaquantumcorrectiontothe
conductance.(b)Adiagramofthescatteringtimesrelatedto
quantuminterferenceingraphene.Thesolidcurveparatesthe
regionsofelectronlocalizationandantilocalization.Pointsare
experimentalvaluesfoundfromtheanalysisofthemagneto-
conductanceusingEq.(1),forthreeregionsofelectrondensity.
PRL103,226801(2009)
PHYSICALREVIEWLETTERS
weekending
27NOVEMBER2009
À112À
e
BB
ÁðBÞ¼
FÀF
À1À11À
h
þ2
i
1À
B
:À2F(1)
À11À1À
þþ
Ã
i
HereFðzÞ¼lnzþð0:5þz
c
À1
Þ,ðxÞisthedigamma
c
1À
function,
B
¼4eDB=@andDisthediffusioncoeffi-
cient.(Thetheoryassumesthatthemomentumrelaxation
1À
rateisthehighestinthesystemandcomesfrom
p
chargedimpurities,anddoesnotaffecttheelectroninter-
ference.)Thequantumcorrectiondependsnotonlyonthe
dephasingtime
iÃ
butonelasticscatteringtimesand.
Graphene’sbandstructurehastwovalleys,andquantum
interferenceofelectronsinonevalleycanbesuppresdby
scatteringonthedefectswiththesizeofthelatticespacing,
aswellasdislocationsandripples[1,2,15].Suchdefects
breakthechirality,whiledislocationsandripplesproduce
aneffectiverandommagneticfieldwhichdestroysthe
interference.Thecombinedeffectofthisintravalleyscat-
teringischaracterizedbythetime
Ã
.Intervalleyscattering
bysharpdefects(suchastheedgesofthesample)thatare
abletoscatterelectronsbetweenthetwovalleysischar-
acterizedbythetime
iÃ
.Whilesmallsuppressinter-
ferencewithinavalley,smallenough
i
restoresitby
mixingthetwovalleys,whichhaveoppositechirality.
NegativeMCcorrespondingtoantilocalizationisdeter-
minedby(negative)condandthirdtermsinEq.(1).In
theabnceofintra-andintervalleyscatteringinadefect-
freegraphenelayer,
i;Ã
!1,ÁðBÞistotallycontrolled
bythethirdterm.Intheoppositecaofstrongintra-and
intervalleyscattering(smalland),bothnegativeterms
Ãi
aresuppresdandthefirst(positive)termdominates,
whichcorrespondstoelectronlocalization.Itisthissitu-
ationthatwasrealizedintheexperiments[12]onmechani-
callyexfoliatedgraphene,wherethenegativeterms
comingfromthechiralityofelectronswereclearlyvisible
butnotlargeenoughtochangethesignoftheMCinlow
fields.
CarefulanalysisofEq.(1)demonstrates,however,that
antilocalizationcanstillbedetectedinsuchsamples.
UsingthefactthatthefunctionFðzÞforz(1(atsmall
magneticfields)canbereprentedbyasimplequadratic
dependenceFðzÞ¼z
2
=24,wesimplifyEq.(1)forsmall
fieldsas
e1
2
4eDB
2
ÁðBÞ¼
1À
24h@
ð1þ2=Þ
i
2
2
À
:(2)
ð1þ=þ=Þ
iÃ
2
tionsfortheobrvationofnegativeMCaresmallratios
Ãi
==
and.Thiscanberealizedbyincreasingthe
temperature(whichdecreas
)andbyloweringthe
carrierdensity(whichincreas
i
[12]).
Thestudiedsampleisproducedbymechanicalex-
foliationofgraphiteanddepositedonanoxidizedSiwafer
[16].Usingelectron-beamlithographyasix-terminalHall
barisformedfromtheflakewithawidthof2manda
lengthbetweenthepotentialprobes(Au=Cr)of22:5m.
Thesamplewasannealedinvacuumatatemperatureof
140
Cfortwohoursbeforecoolingdowninacryostat.
Figure2(a)showsaschematicofthemeasurementcircuit.
TheintshowsthequantumHalleffectwhereplateaux
athalf-integerfillingfactorsareevidencethatthesample
ismonolayergraphene[17].Themobilityofelectrons
outsidetheDirac(electro-neutrality)regionis
$12000cm
2À1À1
Vs
.TheresistanceRasafunctionof
thegatevoltageV
g
showsapeakattheDiracpointwhere
thedensityofchargecarriersiszero.Thebarsindicate
threeregionsofthegatevoltage(ofsizeÁV
g
¼1V)
wheretheMCismeasured.Toaverageouttheeffectof
universalconductancefluctuations[18],theresistanceat
eachmagneticfieldisaveragedovereachoftheregions.
Themeasurementsarethenrepeatedatdifferenttem-
peraturesintherangeT¼5–200K.
Figures2(b)–2(d)showtheevolutionoftheMCwith
changingcarrierdensityatthreetemperatures.Onecane
FIG.2(coloronline).(a)Resistivityasafunctionofthecarrier
density,withthethreeregionswherethemagnetoconductanceis
studiedindicatedbybars.Ints:adiagramofthesampleandthe
resultsofthequantumHalleffectmeasurement.(b),(c),(d)Evo-
lutionofthemagnetoconductancewithdecreasingelectron
density,atthreetemperatures.SolidcurvesarefitstoEq.(1).
Theexpressioninthebracketsdeterminesthesignofthe
MC.Figure1(b)showsadiagramwithacurveÁ¼0
thatparatestheregionsofpositiveandnegativeMC
(localizationandantilocalization).Thefavorablecondi-
226801-2
PRL103,226801(2009)
PHYSICALREVIEWLETTERS
weekending
27NOVEMBER2009
thatwithdecreasingdensity(movingfromregionIIItobecomestoosmalltosatisfytheconditionofantilocaliza-
regionI)theMCatT¼14and27Kchangesitssignfromtion,Fig.1(b).
positivetonegative.Indeed,theratioofthecharacteristicOurexperimentsareperformedatmuchhighertempera-
timesfoundfromtheanalysisoftheMCcurvesusingturesthanthepreviousstudiesofweaklocalizationin
Eq.(1)isentoentertheregionofantilocalizationinexfoliatedgraphene[12,13](T<20K).InFig.3one
Fig.1(b).(AsimilartransitionbetweenWLandWALwascanethatthetemperaturedependentMCexistsattem-
obrvedin2Dsystemswherethestrengthofspin-orbitperaturesT$200K,whileinconventional2Dsystems
scatteringwascontrolledbychangingcarrierdensitythequantumcorrectionusuallydisappearsatmuchlower
[7,8].)AtT¼5K,however,wherethevalueoftemperatures,duetointensiveelectron-phononscattering
is
larger,onecannotachievethetransitiontoantilocalization,
Fig.1(b).
Figure3showstheevolutionoftheMCwithincreasing
temperatureinthethreeregionsofcarrierdensity.Itfol-
lowsfromEq.(1)thatatlowtemperaturesthewidthofthe
dipinsmallBismainlycontrolledby
,whilethe
bendingofthecurveatlargerBisdeterminedbyand
i
Ã
.TheanalysisoftheMCcurvesshowsthat,asexpected,
elastictimesandareesntiallytemperatureinde-
iÃ
pendentbutinelastictime
stronglydecreaswithin-
creasingT.OnecaneinFig.3thatwithincreasingTthe
widthofthedipintheMCincreas(duetoadecreaof
),sothatthedependencebecomesflatatT¼27K.
Withfurtherincreaofthetemperaturethequantum
correctionstartsbeingenagain,butnowasapeakin
theMC.ItswidthcontinuestoincreawithincreasingT,
untilatT$200Kthedependencebecomesflatagain
whenantilocalizationdisappearsduetorapiddephasing
oftheelectrontrajectories.Notethatthetransitionfrom
WLtoWALiseninregionsIandII,butnotinthehigh-
densityregionIII.Inthisregiontheintervalleytime
i
[19].Ingraphene,however,electron-phononscatteringis
expectedtobeweak[20,21],andthusitisinterestingto
examinewhatthesourceofdephasingisathighT.
Inearlierstudiesofelectronlocalization[12]thetem-
1À
peraturedependenceofthedephasingrate
wasfound
tofollowthelineartemperaturedependencecaudby
electron-electronscatteringinthe‘‘diffusive’’regime[22]:
2E
Fp
kT
B
À1
¼;(3)ln
2E
Fp
@
whereisacoefficientoftheorderofunity.Thisregime
correspondstotheconditionk
Bp
T=@<1,whichmeans
thattwointeractingelectronsexperiencemanycollisions
withimpuritiesduringtheinteractiontime@=k
B
T.Figure4
showsthedephasingrate,obtainedfromtheanalysisofthe
MCusingEq.(1),inthethreeregionsofcarrierdensity.
Theexpectedtransportphononscatteringrateingraphene
isgivenbythefollowingrelation[20,21]:
1À
e
-
ph
1ED
Fa
2
¼kT;(4)
322
B
@4VV
F
m
ph
whereD
am
isthedeformationpotentialconstant,isthe
densityofgraphene,Visthespeedofsound,andVis
phF
theFermivelocity.Assumingthatthisscatteringrateis
clotothedephasingrateduetoelectron-phononscatter-
ing,
eph
$
-
[23],weplotitinFig.4usingtheparame-
ters,V,
mph
¼7:6Â10kgm¼2Â10ms
À7À24À1
V
Fa
¼10ms%18eVtakenfromtheanalysis
6À1
,andD
FIG.3(coloronline).(a),(b),(c)Evolutionofthemagneto-FIG.4.Temperaturedependenceofthedephasingrateforthe
conductancewithincreasingtemperatureinthethreestudiedthreeregions.Solidcurvesarefitstotheelectron-electron
regions,showingatransitionfrompositivetonegativelow-fieldscatteringratesfoundasasumofEq.(3)and(5):(a)¼1:5,
magnetoconductance.Bottompanelsshowtheresultsathigh
temperatures.SolidcurvesarefitstoEq.(1).areelectron-phononratescalculatedusingEq.(4).
¼0;(b)¼1:5,¼2:5;(c)¼0,¼2:5.Dottedlines
226801-3
PRL103,226801(2009)
PHYSICALREVIEWLETTERS
weekending
27NOVEMBER2009
ofthetemperaturedependenceoftheclassicalconduc-
tancein[24].Onecanethattheelectron-phononrate
istoolowtoexplaintheexperimentalvalues.Inaddition,
1À
theexperimental
ðTÞinregionsIIandIIIhasstronger
thanlineartemperaturedependence.Thelatterexcludes
notonlyelectron-phononbutalsoelectron-electronscat-
teringinthediffusiveregime.Thealternativeinelastic
scatteringmechanism,whichgivesaparabolictemperature
dependence,iselectron-electronscatteringintheballistic
regime,k
Bp
T=@>1,whenelectroninteractionismedi-
atedbyonlyafewimpurities[25]:
1À
¼ln
ðkTÞ2E
BF
2
:(5)
4
@EkT
FB
Thisdependence,withacoefficientoftheorderofunity,
hasbeenobrvedinexperimentsonhigh-mobility2D
systemsatlowtemperatures[26].InregionIwherethe
transitiontemperaturek
B0p
T=@$1betweenthetwore-
gimesishigh,T
0
$80K,thedephasingratecanbesat-
isfactorilyexplainedbythediffusiveelectron-electron
interaction,Eq.(3).InregionsIIandIIIwithT
0
$60K
and40K,respectively,thedephasingratecanberepre-
ntedasasumofthetworates,Eq.(3)and(5).Therefore,
ourresultsshowthatitiselectron-electronscattering
whichisthemainsourceofhigh-temperaturedephasing
ingraphene,duetoweakelectron-phononscattering.
Insummary,weshowthatelectronantilocalizationin
graphene,aconquenceoftheBerrypha,canbe
realizedexperimentally.Itcanbeenundertheconditions
whenthedephasingtimeismadesmallenoughcompared
withtheelasticinter-andintravalleyscatteringtimes.Our
experimentsshowthatquantuminterferenceingraphene
canexistatextremelyhightemperaturesduetosuppresd
electron-phononscattering.
WearegratefultoD.W.Horll,I.Gornyi,andE.
McCannforreadingthemanuscriptandvaluablecom-
ments,andacknowledgesupportfromtheEPSRCgrant
EP/D031109.
[1]E.McCann,K.Kechedzhi,V.I.Fal’ko,H.Suzuura,
T.Ando,andB.L.Altshuler,Phys.Rev.Lett.97,
146805(2006).
[2]A.F.MorpurgoandF.Guinea,Phys.Rev.Lett.97,196804
(2006).
[3]G.Bergman,Phys.Rep.107,1(1984).
[4]C.W.J.BeenakkerandH.VanHouten,SolidState
Physics,editedbyH.EhrenreichandD.Turnbull
(AcademicPressInc.,SanDiego,1991)Vol.44,p.1.
[5]A.K.Savchenko,A.S.Rylik,andV.N.Lutskii,Zh.Eksp.
Teor.Fiz.85,2210(1983)[Sov.Phys.JETP58,1281
(1983)].
[6]C.Schierholz,T.Matsuyama,U.Merkt,andG.Meier,
Phys.StatusSolidiB233,436(2002).
[7]T.Nihei,Y.Suzuki,M.Kohda,andJ.Nitta,Phys.Status
SolidiC3,4239(2006).
¨
hl,C.M.Marcus,Y.B.Lyanda-[8]J.B.Miller,D.M.Zumbu
Geller,D.Goldhaber-Gordon,K.Campman,andA.C.
Gossard,Phys.Rev.Lett.90,076807(2003).
[9]D.Huertas-Hernando,F.Guinea,andArneBrataas,Phys.
Rev.B74,155426(2006).
[10]X.Wu,X.Li,Z.Song,C.Berger,andW.A.deHeer,Phys.
Rev.Lett.98,136801(2007).
[11]R.V.Gorbachev,F.V.Tikhonenko,A.S.Mayorov,D.W.
Horll,andA.K.Savchenko,Phys.Rev.Lett.98,176805
(2007).
[12]F.V.Tikhonenko,D.W.Horll,R.V.Gorbachev,and
A.K.Savchenko,Phys.Rev.Lett.100,056802(2008).
[13]D.W.Horll,F.V.Tikhonenko,R.V.Gorbachev,and
A.K.Savchenko,Phil.Trans.R.Soc.A366,245(2008).
[14]J.EromsandD.Weiss,NewJ.Phys.11,095021(2009);
Y.-F.Chen,M.-H.Bae,C.Chialvo,T.Dirks,
A.Bezryadin,andN.Mason,arXiv:0906.5090.
[15]S.V.Morozov,K.S.Novolov,M.I.Katsnelson,
F.Schedin,L.A.Ponomarenko,D.Jiang,andA.K.
Geim,Phys.Rev.Lett.97,016801(2006).
[16]K.S.Novolov,A.K.Geim,S.V.Morozov,D.Jiang,
Y.Zhang,S.V.Dubonos,I.V.Grigorieva,andA.A.
Firsov,Science306,666(2004).
[17]K.S.Novolov,A.K.Geim,S.V.Morozov,D.Jiang,
M.I.Katsnelson,I.V.Grigorieva,S.V.Dubonos,and
A.A.Firsov,Nature(London)438,197(2005).
[18]K.Kechedzhi,D.W.Horll,F.V.Tikhonenko,A.K.
Savchenko,R.V.Gorbachev,I.V.Lerner,andV.I.
Fal’ko,Phys.Rev.Lett.102,066801(2009).
[19]M.E.Gershenzon,V.N.Gubankov,andYu.E.Zhuravlev,
JETPLett.35,576(1982).
[20]T.Stauber,N.M.R.Peres,andF.Guinea,Phys.Rev.B76,
205423(2007).
[21]E.H.HwangandS.DasSarma,Phys.Rev.B77,115449
(2008).
[22]B.L.Altshuler,A.G.Aronov,andD.E.Khmelnitsky,
J.Phys.C15,7367(1982).
[23]B.L.Altshuler,A.G.Aronov,A.I.Larkin,andD.E.
Khmelnitsky,Zh.Eksp.Teor.Fiz.
81,768(1981)[Sov.
Phys.JETP54,411(1981)].
[24]J.H.Chen,C.Jang,S.Xiao,M.Ishigami,andM.S.
Fuhrer,NatureNanotech.3,206(2008).
[25]B.N.Narozhny,G.Zala,andI.L.Aleiner,Phys.Rev.B
65,180202(2002).
[26]R.TaboryskiandP.E.Lindelof,Semicond.Sci.Technol.
5,933(1990);Y.Y.Proskuryakov,A.K.Savchenko,S.S.
Safonov,M.Pepper,M.Y.Simmons,andD.A.Ritchie,
Phys.Rev.Lett.86,4895(2001);A.S.Price,A.K.
Savchenko,B.N.Narozhny,G.Allison,andD.A.
Ritchie,Science316,99(2007).
226801-4
本文发布于:2023-11-24 12:01:54,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1700798514225001.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:石墨烯电子局域态.doc
本文 PDF 下载地址:石墨烯电子局域态.pdf
留言与评论(共有 0 条评论) |