首页 > 专栏

石墨烯电子局域态

更新时间:2023-11-24 12:01:54 阅读: 评论:0

飞机制造技术-be动词的用法

石墨烯电子局域态
2023年11月24日发(作者:货款欠条模板)

PRL103,226801(2009)

SelectedforaViewpointinPhysics

PHYSICALREVIEWLETTERS

weekending

27NOVEMBER2009

TransitionbetweenElectronLocalizationandAntilocalizationinGraphene

F.V.Tikhonenko,A.A.Kozikov,A.K.Savchenko,andR.V.Gorbachev

SchoolofPhysics,UniversityofExeter,EX44QLExeter,UnitedKingdom

(Received16July2009;published23November2009)

Weshowthatquantuminterferenceingraphenecanresultinantilocalizationofchargecarriers—an

increaoftheconductance,whichisdetectedbyanegativemagnetoconductance.Wedemonstratethat

dependingonexperimentalconditionsonecanobrveeitherweaklocalizationorantilocalizationof

carriersingraphene.Atransitionfromlocalizationtoantilocalizationoccurswhenthecarrierdensityis

decreadandthetemperatureisincread.Weshowthatquantuminterferenceingraphenecansurviveat

hightemperatures,uptoT$200K,duetoweakelectron-phononscattering.

DOI:10.1103/PhysRevLett.103.226801PACSnumbers:73.23.Àb,,

Quantuminterferenceingraphene,amonolayerofcar-,butalsoonelastic

bonatoms,isverydifferentfromthatinconventionaltwo-

dimensional(2D)systemsduetochiralityofchargecar-

riersandanadditionalquantumnumber,thepudospin

[1,2].ThecarriersingraphenehaveaBerryphaof󰀁:the

additionalphathattheelectronwavefunctionwillac-

quireifanelectroncompletesaclodtrajectory.This

shouldresultinweakantilocalization(WAL)ofcharge

carrierscomparedwiththeconventionallocalization

(WL)in2Dsystems[3,4].

Figure1(a)showshowanelectronscatteredbyimpuri-

tiescaninterfereonaclodtrajectorywhenitistreatedas

awave.Twoelectronwavespropagateinoppositedirec-

tionsaroundthetrajectoryandinterfereatthepointof

intercept.Asthetwopathsareidentical,thephaofthe

twowavesisthesameandtheinterferenceconstructive.

Thisincreastheprobabilityforelectronstoscatterback

anddecreastheelectricalconductancecomparedwithits

classicalDrudevalue.Inexperiment,thequantumcorrec-

tiontotheconductanceisusuallydetectedbyapplyinga

magneticfieldperpendiculartothe2Dsystem.Itaddsa

phadifferencetothetwowavesanddestroystheinter-

ference.Thisresultsinanincreaoftheconductance—

positivemagnetoconductance(MC),Á󰀂ðBÞ¼󰀂ðBÞÀ

󰀂ðB¼0Þ>0.Ingraphene,however,theBerrypha󰀁

addsaphadifferencetothetwointerferingtrajectories,

sothattheymeetinantiphaanddestructiveinterference

occurs.Thisshouldresultinanincreaoftheconductance

duetoquantuminterferenceandanegativemagnetocon-

ductance[1].Thisantilocalizationeffectisverydifferent

fromthatobrvedbeforein2Dsystemswithstrongspin-

orbitscattering[3,58]wherethetwowavesmeetinanti-

phabecauofspinflipsinscatteringbyimpurities—in

graphenespin-orbitinteractionisknowntobeweakdueto

thelowmassofcarbonatoms[9].

Sofartheexperimentalstudiesofquantuminterference

ingraphene-badsystemshavenotrevealednegative

magnetoconductance[1014],althoughtheobrved

weaklocalizationhasbeenentobeunusualinthatit

dependsnotonlyoninelasticscatteringofelectrons,char-

0031-9007=09=103(22)=226801(4)226801-1Ó2009TheAmericanPhysicalSociety

acterizedbythedephasingtime󰀃

󰀄

scatteringcaudbyimpuritiesandimperfectionsinthe

crystalstructure.Weakantilocalizationwasexpectedtobe

enonlyinsampleswithoutdefects,i.e.,intheabnceof

intervalleyscatteringandchiralitybreakingscatteringby

atomicallysharpdefects.Inthisworkweprentclear

evidenceforWALingraphenebyobrvingnegative

MCatlowmagneticfields.Weestablishtheexperimental

conditionsforitsobrvationandshowthatinmechani-

callyexfoliatedgrapheneoneisabletodetectnegativeMC

evenintheprenceofsuchscattering.Wedemonstrate

thatinthesamesampleatransitionbetweenlocalization

andantilocalizationcanbeenbychangingtemperature

andelectrondensity.

Thetheory[1]ofquantuminterferencehasbeenshown

tobeapplicabletothedescriptionoftheMCinmechani-

callyexfoliatedgraphene[12]andagraphiticsystemon

thesurfaceofSiC[10]:

FIG.1(coloronline).(a)Thetrajectoriesofanelectronscat-

teredbyimpuritiesthatgiveritoaquantumcorrectiontothe

conductance.(b)Adiagramofthescatteringtimesrelatedto

quantuminterferenceingraphene.Thesolidcurveparatesthe

regionsofelectronlocalizationandantilocalization.Pointsare

experimentalvaluesfoundfromtheanalysisofthemagneto-

conductanceusingEq.(1),forthreeregionsofelectrondensity.

PRL103,226801(2009)

PHYSICALREVIEWLETTERS

weekending

27NOVEMBER2009

󰀁󰀂󰀁󰀁󰀂

À112À

e󰀃󰀃

BB

Á󰀂ðBÞ¼

FÀF

À1À11À

󰀁h

󰀃󰀃þ2󰀃

󰀄󰀄

i

󰀂󰀂

󰀁

1À

󰀃

B

:À2F(1)

À11À1À

󰀃þ󰀃þ󰀃

󰀄

Ã

i

HereFðzÞ¼lnzþð0:5þz

c

À1

Þ,ðxÞisthedigamma

c

1À

function,󰀃

B

¼4eDB=@andDisthediffusioncoeffi-

cient.(Thetheoryassumesthatthemomentumrelaxation

1À

rate󰀃isthehighestinthesystemandcomesfrom

p

chargedimpurities,anddoesnotaffecttheelectroninter-

ference.)Thequantumcorrectiondependsnotonlyonthe

dephasingtime󰀃

󰀄iÃ

butonelasticscatteringtimes󰀃and󰀃.

Graphene’sbandstructurehastwovalleys,andquantum

interferenceofelectronsinonevalleycanbesuppresdby

scatteringonthedefectswiththesizeofthelatticespacing,

aswellasdislocationsandripples[1,2,15].Suchdefects

breakthechirality,whiledislocationsandripplesproduce

aneffectiverandommagneticfieldwhichdestroysthe

interference.Thecombinedeffectofthisintravalleyscat-

teringischaracterizedbythetime󰀃

Ã

.Intervalleyscattering

bysharpdefects(suchastheedgesofthesample)thatare

abletoscatterelectronsbetweenthetwovalleysischar-

acterizedbythetime󰀃

iÃ

.Whilesmall󰀃suppressinter-

ferencewithinavalley,smallenough󰀃

i

restoresitby

mixingthetwovalleys,whichhaveoppositechirality.

NegativeMCcorrespondingtoantilocalizationisdeter-

minedby(negative)condandthirdtermsinEq.(1).In

theabnceofintra-andintervalleyscatteringinadefect-

freegraphenelayer,󰀃

i;Ã

!1,Á󰀂ðBÞistotallycontrolled

bythethirdterm.Intheoppositecaofstrongintra-and

intervalleyscattering(small󰀃and󰀃),bothnegativeterms

Ãi

aresuppresdandthefirst(positive)termdominates,

whichcorrespondstoelectronlocalization.Itisthissitu-

ationthatwasrealizedintheexperiments[12]onmechani-

callyexfoliatedgraphene,wherethenegativeterms

comingfromthechiralityofelectronswereclearlyvisible

butnotlargeenoughtochangethesignoftheMCinlow

fields.

CarefulanalysisofEq.(1)demonstrates,however,that

antilocalizationcanstillbedetectedinsuchsamples.

UsingthefactthatthefunctionFðzÞforz(1(atsmall

magneticfields)canbereprentedbyasimplequadratic

dependenceFðzÞ¼z

2

=24,wesimplifyEq.(1)forsmall

fieldsas

󰀁󰀂

󰀁

e1

2

4eDB󰀃

󰀄

2

Á󰀂ðBÞ¼

1À

24󰀁h@

ð1þ2󰀃=󰀃Þ

󰀄i

2

󰀂

2

À

:(2)

ð1þ󰀃=󰀃þ󰀃=󰀃Þ

󰀄i󰀄Ã

2

tionsfortheobrvationofnegativeMCaresmallratios

󰀃

󰀄Ã󰀄i

=󰀃=󰀃

and󰀃.Thiscanberealizedbyincreasingthe

temperature(whichdecreas󰀃

󰀄

)andbyloweringthe

carrierdensity(whichincreas󰀃

i

[12]).

Thestudiedsampleisproducedbymechanicalex-

foliationofgraphiteanddepositedonanoxidizedSiwafer

[16].Usingelectron-beamlithographyasix-terminalHall

barisformedfromtheflakewithawidthof2󰀅manda

lengthbetweenthepotentialprobes(Au=Cr)of22:5󰀅m.

Thesamplewasannealedinvacuumatatemperatureof

140

󰀅

Cfortwohoursbeforecoolingdowninacryostat.

Figure2(a)showsaschematicofthemeasurementcircuit.

TheintshowsthequantumHalleffectwhereplateaux

athalf-integerfillingfactorsareevidencethatthesample

ismonolayergraphene[17].Themobilityofelectrons

outsidetheDirac(electro-neutrality)regionis

$12000cm

2À1À1

Vs

.TheresistanceRasafunctionof

thegatevoltageV

g

showsapeakattheDiracpointwhere

thedensityofchargecarriersiszero.Thebarsindicate

threeregionsofthegatevoltage(ofsizeÁV

g

¼1V)

wheretheMCismeasured.Toaverageouttheeffectof

universalconductancefluctuations[18],theresistanceat

eachmagneticfieldisaveragedovereachoftheregions.

Themeasurementsarethenrepeatedatdifferenttem-

peraturesintherangeT¼5200K.

Figures2(b)2(d)showtheevolutionoftheMCwith

changingcarrierdensityatthreetemperatures.Onecane

FIG.2(coloronline).(a)Resistivityasafunctionofthecarrier

density,withthethreeregionswherethemagnetoconductanceis

studiedindicatedbybars.Ints:adiagramofthesampleandthe

resultsofthequantumHalleffectmeasurement.(b),(c),(d)Evo-

lutionofthemagnetoconductancewithdecreasingelectron

density,atthreetemperatures.SolidcurvesarefitstoEq.(1).

Theexpressioninthebracketsdeterminesthesignofthe

MC.Figure1(b)showsadiagramwithacurveÁ󰀂¼0

thatparatestheregionsofpositiveandnegativeMC

(localizationandantilocalization).Thefavorablecondi-

226801-2

PRL103,226801(2009)

PHYSICALREVIEWLETTERS

weekending

27NOVEMBER2009

thatwithdecreasingdensity(movingfromregionIIItobecomestoosmalltosatisfytheconditionofantilocaliza-

regionI)theMCatT¼14and27Kchangesitssignfromtion,Fig.1(b).

positivetonegative.Indeed,theratioofthecharacteristicOurexperimentsareperformedatmuchhighertempera-

timesfoundfromtheanalysisoftheMCcurvesusingturesthanthepreviousstudiesofweaklocalizationin

Eq.(1)isentoentertheregionofantilocalizationinexfoliatedgraphene[12,13](T<20K).InFig.3one

Fig.1(b).(AsimilartransitionbetweenWLandWALwascanethatthetemperaturedependentMCexistsattem-

obrvedin2Dsystemswherethestrengthofspin-orbitperaturesT$200K,whileinconventional2Dsystems

scatteringwascontrolledbychangingcarrierdensitythequantumcorrectionusuallydisappearsatmuchlower

[7,8].)AtT¼5K,however,wherethevalueof󰀃temperatures,duetointensiveelectron-phononscattering

󰀄

is

larger,onecannotachievethetransitiontoantilocalization,

Fig.1(b).

Figure3showstheevolutionoftheMCwithincreasing

temperatureinthethreeregionsofcarrierdensity.Itfol-

lowsfromEq.(1)thatatlowtemperaturesthewidthofthe

dipinsmallBismainlycontrolledby󰀃

󰀄

,whilethe

bendingofthecurveatlargerBisdeterminedby󰀃and

i

󰀃

Ã

.TheanalysisoftheMCcurvesshowsthat,asexpected,

elastictimes󰀃and󰀃areesntiallytemperatureinde-

iÃ

pendentbutinelastictime󰀃

󰀄

stronglydecreaswithin-

creasingT.OnecaneinFig.3thatwithincreasingTthe

widthofthedipintheMCincreas(duetoadecreaof

󰀃

󰀄

),sothatthedependencebecomesflatatT¼27K.

Withfurtherincreaofthetemperaturethequantum

correctionstartsbeingenagain,butnowasapeakin

theMC.ItswidthcontinuestoincreawithincreasingT,

untilatT$200Kthedependencebecomesflatagain

whenantilocalizationdisappearsduetorapiddephasing

oftheelectrontrajectories.Notethatthetransitionfrom

WLtoWALiseninregionsIandII,butnotinthehigh-

densityregionIII.Inthisregiontheintervalleytime󰀃

i

[19].Ingraphene,however,electron-phononscatteringis

expectedtobeweak[20,21],andthusitisinterestingto

examinewhatthesourceofdephasingisathighT.

Inearlierstudiesofelectronlocalization[12]thetem-

1À

peraturedependenceofthedephasingrate󰀃

󰀄

wasfound

tofollowthelineartemperaturedependencecaudby

electron-electronscatteringinthe‘‘diffusive’’regime[22]:

󰀂󰀁

2E󰀃

Fp

kT

B

À1

󰀃¼󰀆;(3)ln

󰀄

2E

Fp

󰀃@

where󰀆isacoefficientoftheorderofunity.Thisregime

correspondstotheconditionk

Bp

T󰀃=@<1,whichmeans

thattwointeractingelectronsexperiencemanycollisions

withimpuritiesduringtheinteractiontime@=k

B

T.Figure4

showsthedephasingrate,obtainedfromtheanalysisofthe

MCusingEq.(1),inthethreeregionsofcarrierdensity.

Theexpectedtransportphononscatteringrateingraphene

isgivenbythefollowingrelation[20,21]:

1À

󰀃

e

-

ph

1ED

Fa

2

¼kT;(4)

322

B

@4V󰀇V

F

m

ph

whereD

am

isthedeformationpotentialconstant,󰀇isthe

densityofgraphene,Visthespeedofsound,andVis

phF

theFermivelocity.Assumingthatthisscatteringrateis

clotothedephasingrateduetoelectron-phononscatter-

ing,󰀃

󰀄eph

$󰀃

-

[23],weplotitinFig.4usingtheparame-

ters󰀇,V,

mph

¼7:6Â10kgm¼2Â10ms

À7À24À1

V

Fa

¼10ms%18eVtakenfromtheanalysis

6À1

,andD

FIG.3(coloronline).(a),(b),(c)Evolutionofthemagneto-FIG.4.Temperaturedependenceofthedephasingrateforthe

conductancewithincreasingtemperatureinthethreestudiedthreeregions.Solidcurvesarefitstotheelectron-electron

regions,showingatransitionfrompositivetonegativelow-fieldscatteringratesfoundasasumofEq.(3)and(5):(a)󰀆¼1:5,

magnetoconductance.Bottompanelsshowtheresultsathigh

temperatures.SolidcurvesarefitstoEq.(1).areelectron-phononratescalculatedusingEq.(4).

󰀈¼0;(b)󰀆¼1:5,󰀈¼2:5;(c)󰀆¼0,󰀈¼2:5.Dottedlines

226801-3

PRL103,226801(2009)

PHYSICALREVIEWLETTERS

weekending

27NOVEMBER2009

ofthetemperaturedependenceoftheclassicalconduc-

tancein[24].Onecanethattheelectron-phononrate

istoolowtoexplaintheexperimentalvalues.Inaddition,

1À

theexperimental󰀃

󰀄

ðTÞinregionsIIandIIIhasstronger

thanlineartemperaturedependence.Thelatterexcludes

notonlyelectron-phononbutalsoelectron-electronscat-

teringinthediffusiveregime.Thealternativeinelastic

scatteringmechanism,whichgivesaparabolictemperature

dependence,iselectron-electronscatteringintheballistic

regime,k

Bp

T󰀃=@>1,whenelectroninteractionismedi-

atedbyonlyafewimpurities[25]:

1À

󰀃¼󰀈ln

󰀄

󰀂

󰀁

󰀁ðkTÞ2E

BF

2

:(5)

4

@EkT

FB

Thisdependence,withacoefficient󰀈oftheorderofunity,

hasbeenobrvedinexperimentsonhigh-mobility2D

systemsatlowtemperatures[26].InregionIwherethe

transitiontemperaturek

B0p

T󰀃=@$1betweenthetwore-

gimesishigh,T

0

$80K,thedephasingratecanbesat-

isfactorilyexplainedbythediffusiveelectron-electron

interaction,Eq.(3).InregionsIIandIIIwithT

0

$60K

and40K,respectively,thedephasingratecanberepre-

ntedasasumofthetworates,Eq.(3)and(5).Therefore,

ourresultsshowthatitiselectron-electronscattering

whichisthemainsourceofhigh-temperaturedephasing

ingraphene,duetoweakelectron-phononscattering.

Insummary,weshowthatelectronantilocalizationin

graphene,aconquenceoftheBerrypha󰀁,canbe

realizedexperimentally.Itcanbeenundertheconditions

whenthedephasingtimeismadesmallenoughcompared

withtheelasticinter-andintravalleyscatteringtimes.Our

experimentsshowthatquantuminterferenceingraphene

canexistatextremelyhightemperaturesduetosuppresd

electron-phononscattering.

WearegratefultoD.W.Horll,I.Gornyi,andE.

McCannforreadingthemanuscriptandvaluablecom-

ments,andacknowledgesupportfromtheEPSRCgrant

EP/D031109.

[1]E.McCann,K.Kechedzhi,V.I.Fal’ko,H.Suzuura,

T.Ando,andB.L.Altshuler,Phys.Rev.Lett.97,

146805(2006).

[2]A.F.MorpurgoandF.Guinea,Phys.Rev.Lett.97,196804

(2006).

[3]G.Bergman,Phys.Rep.107,1(1984).

[4]C.W.J.BeenakkerandH.VanHouten,SolidState

Physics,editedbyH.EhrenreichandD.Turnbull

(AcademicPressInc.,SanDiego,1991)Vol.44,p.1.

[5]A.K.Savchenko,A.S.Rylik,andV.N.Lutskii,Zh.Eksp.

Teor.Fiz.85,2210(1983)[Sov.Phys.JETP58,1281

(1983)].

[6]C.Schierholz,T.Matsuyama,U.Merkt,andG.Meier,

Phys.StatusSolidiB233,436(2002).

[7]T.Nihei,Y.Suzuki,M.Kohda,andJ.Nitta,Phys.Status

SolidiC3,4239(2006).

¨

hl,C.M.Marcus,Y.B.Lyanda-[8]J.B.Miller,D.M.Zumbu

Geller,D.Goldhaber-Gordon,K.Campman,andA.C.

Gossard,Phys.Rev.Lett.90,076807(2003).

[9]D.Huertas-Hernando,F.Guinea,andArneBrataas,Phys.

Rev.B74,155426(2006).

[10]X.Wu,X.Li,Z.Song,C.Berger,andW.A.deHeer,Phys.

Rev.Lett.98,136801(2007).

[11]R.V.Gorbachev,F.V.Tikhonenko,A.S.Mayorov,D.W.

Horll,andA.K.Savchenko,Phys.Rev.Lett.98,176805

(2007).

[12]F.V.Tikhonenko,D.W.Horll,R.V.Gorbachev,and

A.K.Savchenko,Phys.Rev.Lett.100,056802(2008).

[13]D.W.Horll,F.V.Tikhonenko,R.V.Gorbachev,and

A.K.Savchenko,Phil.Trans.R.Soc.A366,245(2008).

[14]J.EromsandD.Weiss,NewJ.Phys.11,095021(2009);

Y.-F.Chen,M.-H.Bae,C.Chialvo,T.Dirks,

A.Bezryadin,andN.Mason,arXiv:0906.5090.

[15]S.V.Morozov,K.S.Novolov,M.I.Katsnelson,

F.Schedin,L.A.Ponomarenko,D.Jiang,andA.K.

Geim,Phys.Rev.Lett.97,016801(2006).

[16]K.S.Novolov,A.K.Geim,S.V.Morozov,D.Jiang,

Y.Zhang,S.V.Dubonos,I.V.Grigorieva,andA.A.

Firsov,Science306,666(2004).

[17]K.S.Novolov,A.K.Geim,S.V.Morozov,D.Jiang,

M.I.Katsnelson,I.V.Grigorieva,S.V.Dubonos,and

A.A.Firsov,Nature(London)438,197(2005).

[18]K.Kechedzhi,D.W.Horll,F.V.Tikhonenko,A.K.

Savchenko,R.V.Gorbachev,I.V.Lerner,andV.I.

Fal’ko,Phys.Rev.Lett.102,066801(2009).

[19]M.E.Gershenzon,V.N.Gubankov,andYu.E.Zhuravlev,

JETPLett.35,576(1982).

[20]T.Stauber,N.M.R.Peres,andF.Guinea,Phys.Rev.B76,

205423(2007).

[21]E.H.HwangandS.DasSarma,Phys.Rev.B77,115449

(2008).

[22]B.L.Altshuler,A.G.Aronov,andD.E.Khmelnitsky,

J.Phys.C15,7367(1982).

[23]B.L.Altshuler,A.G.Aronov,A.I.Larkin,andD.E.

Khmelnitsky,Zh.Eksp.Teor.Fiz.

81,768(1981)[Sov.

Phys.JETP54,411(1981)].

[24]J.H.Chen,C.Jang,S.Xiao,M.Ishigami,andM.S.

Fuhrer,NatureNanotech.3,206(2008).

[25]B.N.Narozhny,G.Zala,andI.L.Aleiner,Phys.Rev.B

65,180202(2002).

[26]R.TaboryskiandP.E.Lindelof,Semicond.Sci.Technol.

5,933(1990);Y.Y.Proskuryakov,A.K.Savchenko,S.S.

Safonov,M.Pepper,M.Y.Simmons,andD.A.Ritchie,

Phys.Rev.Lett.86,4895(2001);A.S.Price,A.K.

Savchenko,B.N.Narozhny,G.Allison,andD.A.

Ritchie,Science316,99(2007).

226801-4

光盘行动手抄报内容-运动会通讯稿范文

石墨烯电子局域态

本文发布于:2023-11-24 12:01:54,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1700798514225001.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:石墨烯电子局域态.doc

本文 PDF 下载地址:石墨烯电子局域态.pdf

标签:small
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|