letterstonature
typicallyslowerthanϳ1kms)mightdiffersignificantlyfrom
−1
whatisassumedbycurrentmodellingefforts.Theexpected
27
equation-of-statedifferencesamongsmallbodies(iceversusrock,
forinstance)prentsanotherdimensionofstudy;havingrecently
adaptedourcodeformassivelyparallelarchitectures(K.M.Olson
andE.A,manuscriptinpreparation),wearenowreadytoperforma
morecomprehensiveanalysis.
Theexploratorysimulationsprentedheresuggestthatwhena
young,non-porousasteroid(ifsuchexist)suffersextensiveimpact
damage,theresultingfracturepatternlargelydefinestheasteroid’s
respontofutureimpacts.Thestochasticnatureofcollisions
impliesthatsmallasteroidinteriorsmaybeasdiverastheir
shapesandspinstates.Detailednumericalsimulationsofimpacts,
usingaccurateshapemodelsandrheologies,couldshedlighton
howasteroidcollisionalrespondependsoninternalconfiguration
andshape,andhenceonhowplanetesimalsevolve.Detailed
simulationsarealsorequiredbeforeonecanpredictthequantitative
effectsofnuclearexplosionsonEarth-crossingcometsand
asteroids,eitherforhazardmitigation
28
throughdisruptionand
deflection,orforresourceexploitation.Suchpredictionswould
29
requiredetailedreconnaissanceconcerningthecompositionand
Ⅺ
internalstructureofthetargetedobject.
Received4February;accepted18March1998.
1.Asphaug,E.&Melosh,H.J.TheStickneyimpactofPhobos:Adynamicalmodel.Icarus101,144–164
(1993).
2.Asphaug,E.etal.MechanicalandgeologicaleffectsofimpactcrateringonIda.Icarus120,158–184
(1996).
3.Nolan,M.C.,Asphaug,E.,Melosh,H.J.&Greenberg,R.Impactcratersonasteroids:Doesstrengthor
gravitycontroltheirsize?Icarus124,359–371(1996).
4.Love,S.J.&Ahrens,T.J.Catastrophicimpactsongravitydominatedasteroids.Icarus124,141–155
(1996).
5.Melosh,H.J.&Ryan,E.V.Asteroids:Shatteredbutnotdisperd.Icarus129,562–564(1997).
6.Houn,K.R.,Schmidt,R.M.&Holsapple,K.A.Craterejectascalinglaws:Fundamentalformsbad
ondimensionalanalysis.J.Geophys.Res.88,2485–2499(1983).
7.Holsapple,K.A.&Schmidt,R.M.Pointsourcesolutionsandcouplingparametersincratering
mechanics.J.Geophys.Res.92,6350–6376(1987).
8.Houn,K.R.&Holsapple,K.A.Onthefragmentationofasteroidsandplanetarysatellites.Icarus84,
226–253(1990).
9.Benz,W.&Asphaug,E.Simulationsofbrittlesolidsusingsmoothparticlehydrodynamics.Comput.
Phys.Commun.87,253–265(1995).
10.Asphaug,E.etal.MechanicalandgeologicaleffectsofimpactcrateringonIda.Icarus120,158–184
(1996).
11.Hudson,R.S.&Ostro,S.J.Shapeofasteroid4769Castalia(1989PB)frominversionofradarimages.
Science263,940–943(1994).
12.Ostro,S.J.etal.Asteroidradarastrometry.Astron.J.102,1490–1502(1991).
13.Ahrens,T.J.&O’Keefe,J.D.inImpactandExplosionCratering(edsRoddy,D.J.,Pepin,R.O.&
Merrill,R.B.)639–656(Pergamon,NewYork,1977).
14.Tillotson,J.H.Metallicequationsofstateforhypervelocityimpact.(GeneralAtomicReportGA-3216,
SanDiego,1962).
15.Nakamura,A.&Fujiwara,A.Velocitydistributionoffragmentsformedinasimulatedcollisional
disruption.Icarus92,132–146(1991).
16.Benz,W.&Asphaug,E.Simulationsofbrittlesolidsusingsmoothparticlehydrodynamics.Comput.
Phys.Commun.87,253–265(1995).
17.Bottke,W.F.,Nolan,M.C.,Greenberg,R.&Kolvoord,R.A.Velocitydistributionsamongcolliding
asteroids.Icarus107,255–268(1994).
18.Belton,M.J.S.etal.Galileoencounterwith951Gaspra—Firstpicturesofanasteroid.Science257,
1647–1652(1992).
19.Belton,M.J.S.etal.Galileo’sencounterwith243Ida:Anoverviewoftheimagingexperiment.Icarus
120,1–19(1996).
20.Asphaug,E.&Melosh,H.J.TheStickneyimpactofPhobos:Adynamicalmodel.Icarus101,144–164
(1993).
21.Asphaug,E.etal.MechanicalandgeologicaleffectsofimpactcrateringonIda.Icarus120,158–184
(1996).
22.Houn,K.R.,Schmidt,R.M.&Holsapple,K.A.Craterejectascalinglaws:Fundamentalformsbad
ondimensionalanalysis.J.Geophys.Res.88,2485–2499(1983).
23.Veverka,J.etal.NEAR’sflybyof253Mathilde:ImagesofaCasteroid.Science278,2109–2112(1997).
24.Asphaug,E.etal.Impactevolutionoficyregoliths.LunarPlanet.Sci.Conf.(Abstr.)XXVIII,63–64
(1997).
¨
rz,F.&Brownlee,D.E.Targetporosityeffectsinimpactcrateringandcollisional25.Love,S.G.,Ho
disruption.Icarus105,216–224(1993).
26.Fujiwara,A.,Cerroni,P.,Davis,D.R.,Ryan,E.V.&DiMartino,M.inAsteroidsII(edsBinzel,R.P.,
Gehrels,T.&Matthews,A.S.)240–265(Univ.ArizonaPress,Tucson,1989).
27.Davis,D.R.&Farinella,P.CollisionalevolutionofEdgeworth-KuiperBeltobjects.Icarus125,50–60
(1997).
28.Ahrens,T.J.&Harris,A.W.Deflectionandfragmentationofnear-Earthasteroids.Nature360,429–
433(1992).
29.ResourcesofNear-EarthSpace(edsLewis,J.S.,Matthews,M.S.&Guerrieri,M.L.)(Univ.Arizona
Press,Tucson,1993).
Acknowledgements.ThisworkwassupportedbyNASA’sPlanetaryGeologyandGeophysicsProgram.
CorrespondenceandrequestsformaterialsshouldbeaddresdtoE.A.(e-mail:asphaug@.
edu).
*Prentaddress:PaulF.LazarsfeldCenterfortheSocialSciences,ColumbiaUniversity,812SIPA
Building,420W118St,NewYork,NewYork10027,USA.
Collectivedynamicsof
‘small-world’networks
DuncanJ.Watts*&StevenH.Strogatz
DepartmentofTheoreticalandAppliedMechanics,KimballHall,
CornellUniversity,Ithaca,NewYork14853,USA
.........................................................................................................................
8
Networksofcoupleddynamicalsystemshavebeenudtomodel
biologicaloscillators
1–45,6
,Jophsonjunctionarrays,excitable
media,neuralnetworks,spatialgames,geneticcontrol
78–1011
networks
12
andmanyotherlf-organizingsystems.Ordinarily,
theconnectiontopologyisassumedtobeeithercompletely
regularorcompletelyrandom.Butmanybiological,technological
andsocialnetworksliesomewherebetweenthetwoextremes.
Hereweexploresimplemodelsofnetworksthatcanbetuned
throughthismiddleground:regularnetworks‘rewired’tointro-
duceincreasingamountsofdisorder.Wefindthatthesystems
canbehighlyclustered,likeregularlattices,yethavesmall
characteristicpathlengths,likerandomgraphs.Wecallthem
‘small-world’networks,byanalogywiththesmall-world
phenomenon
13,1415
(popularlyknownassixdegreesofparation).
TheneuralnetworkofthewormCaenorhabditiselegans,the
powergridofthewesternUnitedStates,andthecollaboration
graphoffilmactorsareshowntobesmall-worldnetworks.
Modelsofdynamicalsystemswithsmall-worldcouplingdisplay
enhancedsignal-propagationspeed,computationalpower,and
synchronizability.Inparticular,infectiousdiasspreadmore
easilyinsmall-worldnetworksthaninregularlattices.
Tointerpolatebetweenregularandrandomnetworks,wecon-
siderthefollowingrandomrewiringprocedure(Fig.1).Starting
fromaringlatticewithnverticesandkedgespervertex,werewire
eachedgeatrandomwithprobabilityp.Thisconstructionallowsus
to‘tune’thegraphbetweenregularity(p¼0)anddisorder(p¼1),
andtherebytoprobetheintermediateregion0ϽpϽ1,about
whichlittleisknown.
Wequantifythestructuralpropertiesofthegraphsbytheir
characteristicpathlengthL(p)andclusteringcoefficientC(p),as
definedinFig.2legend.HereL(p)measuresthetypicalparation
betweentwoverticesinthegraph(aglobalproperty),whereasC(p)
measuresthecliquishnessofatypicalneighbourhood(alocal
property).Thenetworksofinteresttoushavemanyvertices
withsparconnections,butnotsosparthatthegraphisin
dangerofbecomingdisconnected.Specifically,werequire
nqkqlnðnÞq1,wherekqlnðnÞguaranteesthatarandom
graphwillbeconnected
16
.Inthisregime,wefindthat
Lϳn=2kq1andCϳ3=4asp→0,whileLϷL
random
ϳlnðnÞ=lnðkÞ
andCϷC
random
ϳk=np1asp→1.Thustheregularlatticeatp¼0
isahighlyclustered,largeworldwhereLgrowslinearlywithn,
whereastherandomnetworkatp¼1isapoorlyclustered,small
worldwhereLgrowsonlylogarithmicallywithn.Thelimiting
casmightleadonetosuspectthatlargeCisalwaysassociatedwith
largeL,andsmallCwithsmallL.
Onthecontrary,Fig.2revealsthatthereisabroadintervalofp
overwhichL(p)isalmostassmallasL
random
yetCðpÞqC.
random
Thesmall-worldnetworksresultfromtheimmediatedropinL(p)
caudbytheintroductionofafewlong-rangeedges.Such‘short
cuts’connectverticesthatwouldotherwibemuchfartherapart
thanL
random
.Forsmallp,eachshortcuthasahighlynonlineareffect
onL,contractingthedistancenotjustbetweenthepairofvertices
thatitconnects,butbetweentheirimmediateneighbourhoods,
neighbourhoodsofneighbourhoodsandsoon.Bycontrast,anedge
440
Nature © Macmillan Publishers Ltd 1998
NATUREVOL3934JUNE1998
||
letterstonature
removedfromaclusteredneighbourhoodtomakeashortcuthas,at
most,alineareffectonC;henceC(p)remainspracticallyunchanged
forsmallpeventhoughL(p)dropsrapidly.Theimportantimplica-
tionhereisthatatthelocallevel(asreflectedbyC(p)),thetransition
toasmallworldisalmostundetectable.Tochecktherobustnessof
theresults,wehavetestedmanydifferenttypesofinitialregular
graphs,aswellasdifferentalgorithmsforrandomrewiring,andall
givequalitativelysimilarresults.Theonlyrequirementisthatthe
rewirededgesmusttypicallyconnectverticesthatwouldotherwi
bemuchfartherapartthanL
random
.
Theidealizedconstructionaboverevealsthekeyroleofshort
cuts.Itsuggeststhatthesmall-worldphenomenonmightbe
commoninsparnetworkswithmanyvertices,asevenatiny
fractionofshortcutswouldsuffice.Totestthisidea,wehave
computedLandCforthecollaborationgraphofactorsinfeature
films(generatedfromdataavailableat),the
electricalpowergridofthewesternUnitedStates,andtheneural
networkofthenematodewormC.elegans
17
.Allthreegraphsareof
scientificinterest.Thegraphoffilmactorsisasurrogateforasocial
network,withtheadvantageofbeingmuchmoreeasilyspecified.
18
Itisalsoakintothegraphofmathematicalcollaborationscentred,
¨
s(partialdataavailableattraditionally,onP.Erdo
/ϳgrossman/).Thegraphof
thepowergridisrelevanttotheefficiencyandrobustnessof
powernetworks
19
.AndC.elegansisthesoleexampleofacompletely
mappedneuralnetwork.
Table1showsthatallthreegraphsaresmall-worldnetworks.
Theexampleswerenothand-picked;theywerechonbecauof
theirinherentinterestandbecaucompletewiringdiagramswere
available.Thusthesmall-worldphenomenonisnotmerelya
curiosityofsocialnetworks
13,14
noranartefactofanidealized
model—itisprobablygenericformanylarge,sparnetworks
foundinnature.
Wenowinvestigatethefunctionalsignificanceofsmall-world
connectivityfordynamicalsystems.Ourtestcaisadeliberately
simplifiedmodelforthespreadofaninfectiousdia.The
populationstructureismodelledbythefamilyofgraphsdescribed
inFig.1.Attimet¼0,asingleinfectiveindividualisintroduced
intoanotherwihealthypopulation.Infectiveindividualsare
removedpermanently(byimmunityordeath)afteraperiodof
sicknessthatlastsoneunitofdimensionlesstime.Duringthistime,
eachinfectiveindividualcaninfecteachofitshealthyneighbours
withprobabilityr.Onsubquenttimesteps,thediaspreads
alongtheedgesofthegraphuntiliteitherinfectstheentire
population,oritdiesout,havinginfectedsomefractionofthe
populationintheprocess.
8
Table1Empiricalexamplesofsmall-worldnetworks
.............................................................................................................................................................................
LLCC
actualrandomactualrandom
2.99Filmactors3.650.790.00027
12.4Powergrid18.70.0800.005
2.25C.elegans2.650.280.05
.............................................................................................................................................................................
CharacteristicpathlengthLandclusteringcoefficientCforthreerealnetworks,compared
torandomgraphswiththesamenumberofvertices(n)andaveragenumberofedgesper
vertex(k).(Actors:n¼225;226,k¼61.Powergrid:n¼4;941,k¼2:67.C.elegans:n¼282,
k¼14.)Thegraphsaredefinedasfollows.Twoactorsarejoinedbyanedgeiftheyhave
actedinafilmtogether.Werestrictattentiontothegiantconnectedcomponent
16
ofthis
graph,whichincludesϳ90%ofallactorslistedintheInternetMovieDataba(availableat
),asofApril1997.Forthepowergrid,verticesreprentgenerators,
transformersandsubstations,andedgesreprenthigh-voltagetransmissionlines
betweenthem.ForC.elegans,anedgejoinstwoneuronsiftheyareconnectedbyeither
asynaporagapjunction.Wetreatalledgesasundirectedandunweighted,andall
verticesasidentical,recognizingthatthearecrudeapproximations.Allthreenetworks
showthesmall-worldphenomenon:LՌL
randomrandom
butCqC.
1
RegularSmall-worldRandom
0.8
CpC
() / (0)
0.6
0.4
0.2
L
() / (0)
pL
pp
= 0 = 1
Increasing randomness
0
0.00010.0010.010.11
p
Figure2CharacteristicpathlengthL(p)andclusteringcoefficientC(p)fortheFigure1Randomrewiringprocedureforinterpolatingbetweenaregularring
familyofrandomlyrewiredgraphsdescribedinFig.1.HereLisdefinedasthelatticeandarandomnetwork,withoutalteringthenumberofverticesoredgesin
numberofedgesintheshortestpathbetweentwovertices,averagedoverallthegraph.Westartwitharingofnvertices,eachconnectedtoitsknearest
pairsofvertices.TheclusteringcoefficientC(p)isdefinedasfollows.Supponeighboursbyundirectededges.(Forclarity,n¼20andk¼4intheschematic
thatavertexvhaskexamplesshownhere,butmuchlargernandkareudintherestofthisLetter.)
v
neighbours;thenatmostkðk
vv
Ϫ1Þ=2edgescanexist
betweenthem(thisoccurswheneveryneighbourofvisconnectedtoeveryother
neighbourofv).LetC
v
denotethefractionoftheallowableedgesthatactually
exist.DefineCastheaverageofC
v
overallv.Forfriendshipnetworks,the
statisticshaveintuitivemeanings:Listheaveragenumberoffriendshipsinthe
shortestchainconnectingtwopeople;C
v
reflectstheextenttowhichfriendsofv
arealsofriendsofeachother;andthusCmeasuresthecliquishnessofatypical
friendshipcircle.Thedatashowninthefigureareaveragesover20random
realizationsoftherewiringprocessdescribedinFig.1,andhavebeennormalized
bythevaluesL(0),C(0)foraregularlattice.Allthegraphshaven¼1;000vertices
andanaveragedegreeofk¼10edgespervertex.Wenotethatalogarithmic
horizontalscalehasbeenudtoresolvetherapiddropinL(p),correspondingto
theontofthesmall-worldphenomenon.Duringthisdrop,C(p)remainsalmost
constantatitsvaluefortheregularlattice,indicatingthatthetransitiontoasmall
worldisalmostundetectableatthelocallevel.
Wechooavertexandtheedgethatconnectsittoitsnearestneighbourina
clockwin.Withprobabilityp,wereconnectthisedgetoavertexchon
uniformlyatrandomovertheentirering,withduplicateedgesforbidden;other-
wiweleavetheedgeinplace.Werepeatthisprocessbymovingclockwi
aroundthering,consideringeachvertexinturnuntilonelapiscompleted.Next,
weconsidertheedgesthatconnectverticestotheircond-nearestneighbours
clockwi.Asbefore,werandomlyrewireeachoftheedgeswithprobabilityp,
andcontinuethisprocess,circulatingaroundtheringandproceedingoutwardto
moredistantneighboursaftereachlap,untileachedgeintheoriginallatticehas
beenconsideredonce.(Astherearenk/2edgesintheentiregraph,therewiring
processstopsafterk/2laps.)Threerealizationsofthisprocessareshown,for
differentvaluesofp.Forp¼0,theoriginalringisunchanged;aspincreas,the
graphbecomesincreasinglydisordereduntilforp¼1,alledgesarerewired
randomly.Oneofourmainresultsisthatforintermediatevaluesofp,thegraphis
asmall-worldnetwork:highlyclusteredlikearegulargraph,yetwithsmall
characteristicpathlength,likearandomgraph.(SeeFig.2.)
NATUREVOL3934JUNE1998
||
Nature © Macmillan Publishers Ltd 1998
441
letterstonature
Tworesultsemerge.First,thecriticalinfectiousnessr,atwhich
half
thediainfectshalfthepopulation,decreasrapidlyforsmallp
(Fig.3a).Second,foradiathatissufficientlyinfectioustoinfect
theentirepopulationregardlessofitsstructure,thetimeT(p)
requiredforglobalinfectionremblestheL(p)curve(Fig.3b).
Thus,infectiousdiasarepredictedtospreadmuchmoreeasily
andquicklyinasmallworld;thealarmingandlessobviouspointis
howfewshortcutsareneededtomaketheworldsmall.
Ourmodeldiffersinsomesignificantwaysfromothernetwork
modelsofdiaspreading
20–2411
.Allthemodelsindicatethatnet-playedonagraph,we
workstructureinfluencesthespeedandextentofdiatransmis-findthatasthefractionofshortcutsincreas,cooperationisless
sion,butourmodelilluminatesthedynamicsasanexplicitfunctionlikelytoemergeinapopulationofplayersusingageneralized‘tit-
ofstructure(Fig.3),ratherthanforafewparticulartopologies,suchfor-tat’
asrandomgraphs,starsandchainsoutofaninitialcooperative/non-cooperativemixalsodecreas
20–23
.Intheworkclosttoours,
KretschmarandMorrishaveshownthatincreasinthenumber
24
ofconcurrentpartnershipscansignificantlyacceleratethepropaga-oscillatorssynchronizealmostasreadilyasinthemean-field
tionofaxually-transmitteddiathatspreadsalongtheedgesofmodel
agraph.Alltheirgraphsaredisconnectedbecautheyfixthe
averagenumberofpartnersperpersonatk¼1.Anincreainthe
numberofconcurrentpartnershipscausfasterspreadingby
increasingthenumberofverticesinthegraph’slargestconnected
component.Incontrast,allourgraphsareconnected;hencethe
predictedchangesinthespreadingdynamicsareduetomoresubtle
structuralfeaturesthanchangesinconnectedness.Moreover,
changesinthenumberofconcurrentpartnersareobvioustoan
individual,whereastransitionsleadingtoasmallerworldarenot.
Wehavealsoexaminedtheeffectofsmall-worldconnectivityon
threeotherdynamicalsystems.Ineachca,theelementswere
coupledaccordingtothefamilyofgraphsdescribedinFig.1.(1)For
cellularautomatachargedwiththecomputationaltaskofdensity
classification
25
,wefindthatasimple‘majority-rule’runningona
small-worldgraphcanoutperformallknownhumanandgenetic
algorithm-generatedrulesrunningonaringlattice.(2)Forthe
iterated,multi-player‘Prisoner’sdilemma’
26
strategy.Thelikelihoodofcooperativestrategiesevolving
withincreasingp.(3)Small-worldnetworksofcoupledpha
2
,despitehavingordersofmagnitudefeweredges.This
resultmayberelevanttotheobrvedsynchronizationofwidely
paratedneuronsinthevisualcortexif,asemsplausible,the
27
brainhasasmall-worldarchitecture.
Wehopethatourworkwillstimulatefurtherstudiesofsmall-
worldnetworks.Theirdistinctivecombinationofhighclustering
withshortcharacteristicpathlengthcannotbecapturedby
traditionalapproximationssuchasthobadonregularlattices
orrandomgraphs.Althoughsmall-worldarchitecturehasnot
receivedmuchattention,wesuggestthatitwillprobablyturnout
tobewidespreadinbiological,socialandman-madesystems,often
Ⅺ
withimportantdynamicalconquences.
Received27November1997;accepted6April1998.
1.Winfree,A.T.TheGeometryofBiologicalTime(Springer,NewYork,1980).
2.Kuramoto,Y.ChemicalOscillations,Waves,andTurbulence(Springer,Berlin,1984).
3.Strogatz,S.H.&Stewart,I.Coupledoscillatorsandbiologicalsynchronization.Sci.Am.269(6),102–
109(1993).
4.Bressloff,P.C.,Coombes,S.&DeSouza,B.Dynamicsofaringofpul-coupledoscillators:agroup
theoreticapproach.Phys.Rev.Lett.79,2791–2794(1997).
5.Braiman,Y.,Lindner,J.F.&Ditto,W.L.Tamingspatiotemporalchaoswithdisorder.Nature378,
465–467(1995).
6.Wienfeld,K.Newresultsonfrequency-lockingdynamicsofdisorderedJophsonarrays.PhysicaB
222,315–319(1996).
7.Gerhardt,M.,Schuster,H.&Tyson,J.J.Acellularautomatonmodelofexcitablemediaincluding
curvatureanddispersion.Science247,1563–1566(1990).
8.Collins,J.J.,Chow,C.C.&Imhoff,T.T.Stochasticresonancewithouttuning.Nature376,236–238
(1995).
9.Hopfield,J.J.&Herz,A.V.M.Rapidlocalsynchronizationofactionpotentials:Towardcomputation
withcoupledintegrate-and-fireneurons.Proc.NatlAcad.Sci.USA92,6655–6662(1995).
10.Abbott,L.F.&vanVreeswijk,C.Asynchronousstatesinneuralnetworksofpul-coupledoscillators.
Phys.Rev.E48(2),1483–1490(1993).
11.Nowak,M.A.&May,R.M.Evolutionarygamesandspatialchaos.Nature359,826–829(1992).
12.Kauffman,S.A.Metabolicstabilityandepigenesisinrandomlyconstructedgeneticnets.J.Theor.Biol.
22,437–467(1969).
13.Milgram,S.Thesmallworldproblem.Psychol.Today2,60–67(1967).
14.Kochen,M.(ed.)TheSmallWorld(Ablex,Norwood,NJ,1989).
15.Guare,J.SixDegreesofSeparation:APlay(VintageBooks,NewYork,1990).
´
s,B.RandomGraphs(Academic,London,1985).16.Bollaba
17.Achacoso,T.B.&Yamamoto,W.S.AY’sNeuroanatomyofC.elegansforComputation(CRCPress,Boca
Raton,FL,1992).
18.Wasrman,S.&Faust,K.SocialNetworkAnalysis:MethodsandApplications(CambridgeUniv.Press,
1994).
19.Phadke,A.G.&Thorp,J.S.ComputerRelayingforPowerSystems(Wiley,NewYork,1988).
20.Sattenspiel,L.&Simon,C.P.Thespreadandpersistenceofinfectiousdiasinstructured
populations.Math.Biosci.90,341–366(1988).
21.Longini,I.M.JrAmathematicalmodelforpredictingthegeographicspreadofnewinfectiousagents.
Math.Biosci.90,367–383(1988).
22.Hess,G.Diainmetapopulationmodels:implicationsforconrvation.Ecology77,1617–1632
(1996).
23.Blythe,S.P.,Castillo-Chavez,C.&Palmer,J.S.Towardaunifiedtheoryofxualmixingandpair
formation.Math.Biosci.107,379–405(1991).
24.Kretschmar,M.&Morris,M.Measuresofconcurrencyinnetworksandthespreadofinfectious
dia.Math.Biosci.133,165–195(1996).
25.Das,R.,Mitchell,M.&Crutchfield,J.P.inParallelProblemSolvingfromNature(edsDavido,Y.,
¨
nner,R.)344–353(LectureNotesinComputerScience866,Springer,Berlin,Schwefel,H.-P.&Ma
1994).
26.Axelrod,R.TheEvolutionofCooperation(BasicBooks,NewYork,1984).
¨
nig,P.,Engel,A.K.&Singer,W.Oscillatoryresponsincatvisualcortexexhibitinter-27.Gray,C.M.,Ko
columnarsynchronizationwhichreflectsglobalstimulusproperties.Nature338,334–337(1989).
Acknowledgements.WethankB.Tjadenforprovidingthefilmactordata,andJ.ThorpandK.Baeforthe
WesternStatesPowerGriddata.ThisworkwassupportedbytheUSNationalScienceFoundation
(DivisionofMathematicalSciences).
CorrespondenceandrequestsformaterialsshouldbeaddresdtoD.J.W.(e-mail:djw24@).
8
a
0.35
0.3
r
half
0.25
0.2
0.15
0.00010.0010.010.11
p
b
1
0.8
TpT
() /(0)
LpL
() /(0)
0.6
0.4
0.2
0
0.00010.0010.010.11
p
Figure3Simulationresultsforasimplemodelofdiaspreading.The
communitystructureisgivenbyonerealizationofthefamilyofrandomlyrewired
graphsudinFig.1.a,Criticalinfectiousnessr
half
,atwhichthediainfects
halfthepopulation,decreaswithp.b,ThetimeT(p)requiredforamaximally
infectiousdia(r¼1)tospreadthroughouttheentirepopulationhasesn-
tiallythesamefunctionalformasthecharacteristicpathlengthL(p).Evenifonlya
fewpercentoftheedgesintheoriginallatticearerandomlyrewired,thetimeto
globalinfectionisnearlyasshortasforarandomgraph.
442
Nature © Macmillan Publishers Ltd 1998
NATUREVOL3934JUNE1998
||
本文发布于:2023-11-24 11:45:13,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1700797513224998.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:Collective dynamics of 'small.doc
本文 PDF 下载地址:Collective dynamics of 'small.pdf
留言与评论(共有 0 条评论) |