IEEETRANSACTIONSONSOLID-STATECIRCUITS,VOL.35,NO.2,FEBRUARY2000221
Three-StageLargeCapacitiveLoadAmplifierwith
Damping-Factor-ControlFrequencyCompensation
KaNangLeung,PhilipK.T.Mok,Member,IEEE,Wing-HungKi,Member,IEEE,and
JohnnyK.O.Sin,SeniorMember,IEEE
Abstract—Anoveldamping-factor-controlfrequencycompen-
sation(DFCFC)techniqueisprentedinthispaperwithdetailed
theoreticalanalysis.Thiscompensationtechniqueimprovesfre-
quencyrespon,transientrespon,andpowersupplyrejection
foramplifiers,especiallywhendrivinglargecapacitiveloads.
Moreover,therequiredcompensationcapacitorsaresmalland
canbeeasilyintegratedincommercialCMOSprocess.
AmplifiersusingDFCFCandnestedMillercompensation
(NMC)drivingtwocapacitiveloads,100and1000pF,were
fabricatedusinga0.8-
V=
V
mCMOSprocesswith
tn
=
0.72Vand
tp
slewrate,3.54-
sttlingtime,and426-Wpowerconsumption
V/s
areobtainedwithintegratedcompensationcapacitors.Compared
totheNMCamplifier,thefrequencyandtransientresponsof
theDFCFCamplifierareimprovedbyoneorderofmagnitude
withinsignificantincreaonthepowerconsumption.
IndexTerms—Dampingfactor,frequencycompensation,large
capacitiveload,multistageamplifier.
I.I
NTRODUCTION
W
ITHtherapiddecreainthesupplyvoltageinVLSI,
morecircuitdesignersareawareoftheimportanceof
low-voltagemultistageamplifiers.However,allmultistage
amplifierssufferclo-loopstabilityproblemsduetotheir
multiple-polenature.Therefore,manyfrequencycompensation
topologieshavebeenpropod[1]–[6].
AsmentionedbyEschauzieretal.[1]andHuijsingetal.
[2],multistageamplifierssufferbandwidthreduction,anda
single-stageamplifierisoptimumonbandwidth.Compared
toasingle-stageamplifier,thegain-bandwidthproductsofa
two-stagesimpleMillercompensated(SMC)amplifieranda
three-stagenestedMillercompensated(NMC)amplifierare
reducedtohalfandonequarter,respectively[1],[2].Asaresult,
otheradvancedtopologies,suchasmultipathNMC(MNMC),
hybridNMC(HNMC),multipathHNMC(MHNMC),and
nestedGm-Ccompensation(NGCC),weredevelopedto
overcomethebandwidthreductionproblem[1]–[5].Forthe
topologies,whicharebadonNMC,pole–zerocancellation
andfeed-forwardtechniqueareudtoextendthebandwidth.
However,fromthefindingsshowninFig.1,thebandwidth
improvementsbytheabove-mentionedtopologiesoverNMC
ManuscriptreceivedJuly2,1999;revidSeptember30,1999.This
workwassupportedbytheRGCCompetitiveEarmarkedRearchGrant
HKUST6007/97E,HongKongSARGovernment.
TheauthorsarewiththeDepartmentofElectricalandElectronicEngineering,
TheHongKongUniversityofScienceandTechnology,ClearWaterBay,Hong
Kong,China.
PublisherItemIdentifierS0018-9200(00)00938-0.
arenotsufficient,andtheprovidedbandwidthsarenarrower
thanthebandwidthofasingle-stageamplifier.Inaddition,
tradeoffsbetweenbandwidthandotheramplifiercharacteristics
suchasttlingtimeandpowerconsumptionarerequired.In
particular,higherpowerconsumptionisneededtoincrea
thebandwidthwhentheamplifierisrequiredtodrivealarge
capacitiveloadsuchastheerroramplifierinalinearregulator.
Furthermore,bothsmall-signalandttlingbehaviorshouldbe
improvedatthesametimeinordertoobtainafastamplifier
[7].Nevertheless,theabove-mentionedtopologiesaremainly
concernedwiththeimprovementofthefrequencyrespon.
Anotherissuetobeconsideredistheoptimumnumberof
gainstages.Generally,frequencycompensationtechniquesfor
three-stageamplifiersareadequateforpracticalpurpossince
three-stageamplifiersmaintainagoodcompromibetweenthe
voltagegain
222IEEETRANSACTIONSONSOLID-STATECIRCUITS,VOL.35,NO.2,FEBRUARY2000
Fig.1.Bandwidthcomparisonofdifferentfrequencycompensationtopologies(takeNMCasthereference).
isthedominantpole.Tostabilize
theNMCamplifier,theNMCamplifiershouldhavethird-order
Butterworthfrequencyrespon[9]inunity-feedbackconfigu-
andshouldobeythefollowingdimension
ration,and
conditions[1]–[3]:
(a)
and
(b)
Fig.2.(a)Structureofathree-stageNMCamplifier.(b)Equivalent
small-signalcircuitofthethree-stageNMCamplifier.
pendson
.From(1)and(3),thenondominantpolesde-
andthusdependsontheloadingcapacitance
negativecapacitivefeedbackloopsbyand
,,andand
isrequired,andthenondominantpoleswilllocate
atratherlowfrequencies.Therefore,thebandwidthofanNMC
amplifierispoor.
and
Substitutingthedimensionconditionsof
into(1),thecondandthirdpolewillformacomplexpole
withdampingfactorof
andphamarginare[1]
(4)
(5)
Fromtheaboveresults,thegain-bandwidthproductdecreas
astheloadingcapacitanceincreas.Theonlymethodtoin-
LEUNGetal.:THREE-STAGELARGECAPACITIVELOADAMPLIFIERWITHDFCFC223
creathebandwidthofanNMCamplifieristoenlarge
byincreasingthequiescentcurrentandsizeofthetransistors
oftheoutputgainstage.Moreover,fromthedesignpointof
view,NMCisnotsuitableforlow-powerdesignastheprevi-
,maynotbevalid.
ouslystatedassumption,
Althoughsmallbiascurrentandsmalltransistorsizecanreduce
suchthatissmallerthan,thesamedoesnotapply
.Thisisduetothesmallbiascurrentattheinputstage
to
whichreducestheslewrateoftheamplifier[10]–[15]andthe
smallsizeoftheinputdifferentialpair,whichintroducesalarge
offtvoltage[15].Thus,NMCmaynotbesuitableforampli-
fiersdrivinglargecapacitiveloadsandinlow-powerdesigns.
III.DFCFC
Inthisction,detailedanalysisonthetransferfunction,sta-
bilitycriteria,slewrate,ttlingtime,andpowersupplyrejec-
tionratioofthepropodDFCFCstructurearediscusd.
A.StructureofDFCFC
Fromthediscussioninthepreviousction,thepoorband-
widthofanNMCamplifierismainlyduetotheprenceof
,whichispartofcapacitiveloadtotheamplifier[1],[6].
Byeliminating,thecapacitiveloadattheoutputisreduced.
Thenondominantpoleswillthenrelocateathigherfrequencies,
andthebandwidthoftheNMCamplifiercanbeextended.Nev-
ertheless,thetwonondominantpolesformacomplexpole.The
dampingfactorofthecomplexpoleisverysmall.Moreover,
thereisnocontrolofthedampingfactoras
isabnt.As
showninFig.3,thesmalldampingfactorcausafrequency
‘peak’toappearneartheunity-gainfrequencyoftheamplifier,aresmallerthanthecompensationcapacitances,loadingcapac-
andthisprohibitsstableclo-loopoperation.(isgenerallylargerthanotherparasitic
Inordertoobtainalargerbandwidthandstabilizetheam-capacitancesasitdependsonthesizeofthetransistorofthe
plifieratthesametime,DFCFCisud.Thestructureandthe
equivalentcircuitareshowninFig.4.Therearetwoadditional
buildingblocks:1)thefeed-forwardtransconductancestageisthedom-
(FTS)and2)thedamping-factor-control(DFC)block.Theinantpole.Itshouldbenotedthattheeffectof
functionoftheFTSistoimplementapush–pulloutputstage
toimprovetheslewingperformance.TheDFCblockisudto
controlthedampingfactorofthenondominantcomplexpoleto
maketheamplifierstable.Theresultantopen-loopfrequency
responoftheDFCFCamplifierisshowninFig.3.The
DFCFCbandwidthiswiderthanthatoftheNMCamplifier.
Forthedetailsofthetwoadditionalblocks,theDFCblockis
,output,andthegain-bandwidth
simplyanegativegainstagewithtransconductance
Fig.3.Bodeplotofthefrequencyrespons.
resistance
tosim-
plifytheexpressionandwiththefollowingassumptions.1)The
and
dcgainoftheDFCblockisgreaterthanone;2)
itance,and
outputstage),thetransferfunctionisgivenby(6),shownatthe
bottomofthepage,where
iscan-
celedinthetransferfunction,soitisnotalwaysnecessaryto
.Theabovetransferfunctionholdstrueaslong
t
issmall,shouldbettoequal
as
;otherwi,ttofurtheroptimize
thesizeofthecompensationcapacitors.
From(6),shownatthebottomofthepage,itisobviousthat
thedampingfactorandlocationofthecomplexpolecanbecon-
trolledbyanoptimumvalueof
224IEEETRANSACTIONSONSOLID-STATECIRCUITS,VOL.35,NO.2,FEBRUARY2000
(a)
(b)
Fig.4.(a)StructureofaDFCFCamplifier.(b)Equivalentsmall-signalcircuitoftheDFCFCamplifier.
productiscontrolledby.Moreover,thenondominantpoles
locateathigherfrequenciesasthecond-orderfunctionde-
insteadof,which
pendsontheparasiticcapacitance
isloadingcapacitancedependentinNMCtopology.
C.StabilityCriteria,Gain-BandwidthProduct,andPha
Margin
Fromthepreviousction,itisknownthatthestabilityofthe
and
amplifiercanbecontrolledbyappropriatevaluesof
.Inthisction,thedimensionconditionsarecalculated.
Wemodelthetransferfunctionwithidealfunctionfirstand
thenapplytheresults.Tobegin,assumingthattheeffectof
thezerosisnegligibleandconsideringthatthepolesofthe
DFCFCamplifierinunity-feedbackconfigurationhavethird-
orderButterworthfrequencyrespon[9],thetransferfunc-
tioninunity-gainfeedback
isgivenby
withdamping
factor
,
LEUNGetal.:THREE-STAGELARGECAPACITIVELOADAMPLIFIERWITHDFCFC225
isobtainedbysolvingthecond-orderfunctionin(8)andis
givenby
(11)
Thegain-bandwidthproduct
(12)
andthephamargin
(13)
ByapplyingtheabovemodelingonDFCFC,threeequations
areobtainedbycomparingthecoefficientsofthedenominator
of(8)withthoof(6).
(14)
(15)
isderived.
,thedimensionconditionofinDFCFCisgiven
by
,itcanbeobtainedbyfirstly
substituting(15)into(14)toacquire
(19)
andthensubstituting(18)into(19)toobtain
(20)
Sinceitispreferabletohavethesameoutputcurrentcapability
forboththep-andthen-transistoroftheoutputstage,thesizes
ofthep-andn-transistorareudintheratioof3to1tocompen-
sateforthedifferenceinthemobilitiesofthecarriers.Thus,itis
reasonabletot
,and(18)and(20)arerewritten
as
(21)
(22)
where
anddependonthe
ratiosoftransconductancesandcapacitances,thestabilityofthe
DFCFCamplifierislessnsitivetoglobalvariationsofcircuit
parameters.
From(23),
ratio,andthevalue
uired
isre-
ducedby
andin(21)isadecreasingfunctionwith
issmallandonlyasmallamountofpoweris
dissipatedintheDFCblock.
Asthezerosoftheamplifierdependon(whichissmallas
provenpreviously)and
,theyareathigherfrequenciesthanthe
polesoftheamplifierandtheeffectfromthezeroscanbeneglected.
Therefore,thepreviouslystatedassumptionisvalid,andthepres-
enceofzerosdoesnotinvalidatethestabilitycriteria.
From(12)to(14),thegain-bandwidthproductandpha
marginoftheDFCFCamplifieraregivenby
(24)
(25)
Itcanbeshownfrom(24)thatthebandwidthofaDFCFCam-
plifieris
(i.e.,alargerloadingca-
pacitance).ReferringtoFig.1,thebandwidthoftheDFCFC
amplifiermaybeevenlargerthanasingle-stageamplifierwhen
insomeapplications,asmallercanbeudtode-
creathephamarginandfurtherincreathebandwidthof
theamplifier.
226IEEETRANSACTIONSONSOLID-STATECIRCUITS,VOL.35,NO.2,FEBRUARY2000
D.SlewRate
AftertheanalysisonACbehavior,thetransientbehavioris
studiedinthisctionandthenextction.Assumingthatthe
outputstageisofpush–pullorclass-ABtype,theslewrateis
notlimitedbytheoutputstage.Thus,theslewrateofamulti-
stageamplifierdependsontwofactors.Oneisthevalueofthe
compensationcapacitor
[10]–[15].In
mathematicalexpression,theslewrate
times,theim-
provementontheslewrateusingDFCFCisimprovedby
ratio.
Therefore,theslewrateofaDFCFCamplifierisbetterthanthat
oftheNMCcounterpart,especiallywhendrivingalargecapac-
itiveload.
E.SettlingTime
Settlingbehaviorofanamplifierisveryesntialinanalog
designsinceitdirectlyaffectstheperformanceofthecircuits
usingtheamplifier.Toenhancethettlingbehavior,thefirst
thingtoinvestigateisitsdependence.Neglectingtheshort
durationofthesmall-signalresponbeforeslewing,the
ttlingtime
canbemainlydividedintotwoperiods.
Theyaretheslewingperiod
[10],[11].Thedependenceoftheslewratehasbeen
discusdinthepreviousction,andtheslewrateisproven
tobegreatlyimprovedbyDFCFC.Forthequasi-linearperiod,
itisastrongfunctionofthephamargin[17],anditalso
dependsonhowcompresdpole–zerodoubletisbelowthe
unity-gainfrequencyoftheamplifier[1],[3].
InthecaofusingDFCFC,asthereisnopole–zerodoublet,
thequasi-linearperiodonlydependsonthephamargin.By
usingthestabilitycriteriastatedbefore,thephamarginofthe
DFCFCamplifierisapproximately60
(27)
where
m
CMOSprocesswith
LEUNGetal.:THREE-STAGELARGECAPACITIVELOADAMPLIFIERWITHDFCFC227
(a)
(b)
Fig.6.Circuitdiagramofthe(a)NMCamplifierand(b)DFCFCamplifier.
Fig.7.Micrographoftheamplifiers.
byM101-M108,M201-M204,andM301,respectively.For
theDFCFCcounterparts,theadditionalM302istheFTS,
andM401-M404istheDFCblock.Itshouldbenotedthat
sincethecircuitsaretodemonstratethepropodfrequency
compensationstructure,thecircuitstructuredisplayedinFig.6
isoneofmanymethodstoimplementthepropodstructure.
Additionalcircuitrytocontrolthedcoperatingpointofthe
DFCblockandtoimplementaclass-ABoutputstagewith
feedbackcontrolcanbeaddedtothecircuitstructuretobuilda
higherperformanceamplifier.
Tooptimizethevaluesofthecompensationcapacitorsinthe
DFCFCamplifiers,thevaluesof
are3pFforboth100and
inbothcas
1000pFloadingconditions.Thevaluesof
areobtainedfromthepreviousanalysisandarefine-tunedto
optimizethetradeoffbetweenthebandwidthandphamargin.
AsshowninTableI,sincethevaluesofthecompensationca-
pacitorsaremuchsmallerforDFCFC,thesizesoftheDFCFC
1
AMS.ThemicrographisshowninFig.7.FortheNMC
1
amplifiers,thefirst,condandthirdstagesareimplemented
AustriaMikroSystemeInternationalAG,A-8141Unterpremstatten,Aus-
tria.
228IEEETRANSACTIONSONSOLID-STATECIRCUITS,VOL.35,NO.2,FEBRUARY2000
(a)
(b)
Fig.8.Frequencyresponsofthe(a)NMCand(b)DFCFCamplifierwith
100-pFloadingcapacitance(onlythefrequenciesneartheunity-gainfrequency
areshown).
Fig.9.Transientresponsoftheamplifiersdriving100pF.
amplifiersaresmallandeasytointegrate.Ontheotherhand,the
NMCamplifierdrivinga1000-pFloadrequiresunrealisticlarge
compensationcapacitors
pF),
andthusintegrationisimpossible.
V.E
XPERIMENTALESULTS
R
ThefrequencyresponsmeasuredwiththeHP4194A
impedance/gain-phaanalyzerareshowninFigs.8and10,
whilethetransientresponsmeasuredwiththeLeCroy9354A
oscilloscopeareshowninFigs.9and11.Theperformancesare
tabulatedinTableI.
(a)
(b)
Fig.10.Frequencyresponsofthe(a)NMCand(b)DFCFCamplifier
with1000-pFloadingcapacitance(onlythefrequenciesneartheunity-gain
frequencyareshown).
Fig.11.Transientresponsoftheamplifiersdriving1000pF.
Asshowninthefiguresandtable,bycomparingtheDFCFC
amplifiertotheNMCcounterpart,DFCFCimprovesthegain-
bandwidthproductby4times,theslewrateby6times,thet-
tlingtimeby3times,andthenegativepowersupplyrejection
ratiobyatleast40dBforthecadriving100pF.Foralarger
loadingcapacitanceof1000pF,theimprovementismoresignif-
icant.Thegain-bandwidthproductisimprovedby18times.The
slewrateandttlingtimeareimprovedby14and9times,re-
spectively.Inaddition,thenegativepowersupplyrejectionratio
isenhancedbyatleast60dB.However,thereisonlynegligible
increaonthepowerconsumption.
LEUNGetal.:THREE-STAGELARGECAPACITIVELOADAMPLIFIERWITHDFCFC229
TABLEI
MRNMCDFCFCA
EASUREDESULTSOFTHEANDMPLIFIERS
TABLEII
CDMA
OMPARISONOFIFFERENTULTISTAGEMPLIFIERS
SincethebandwidthimprovementbyDFCFCwitha1000-pF
loadis18times,whichismuchgreaterthan4,thebandwidth
providedbytheamplifierisevenwiderthanasingle-stageam-
plifierundernearlythesamepowerconsumption.
ToprovideaclearerpictureontheimprovementsbyDFCFC,
acomparisontableforsomepublishedamplifiersusingdifferent
compensationtopologiesisshowninTableII.Twofiguresof
,aredefinedforsmall-signaland
merit,
large-signalperformances.
(28)
andpF/mWandV/
230IEEETRANSACTIONSONSOLID-STATECIRCUITS,VOL.35,NO.2,FEBRUARY2000
A
CKNOWLEDGMENT
TheauthorswouldliketothankProf.W.T.NgfromtheUni-
versityofToronto,Toronto,ON,Canada,forhisvaluablesug-
gestions,andtheyalsowouldliketothankS.F.LukandJ.Chan
fromHKUSTfortheirtechnicalassistance.
R
EFERENCES
[1]R.G.H.EschauzierandJ.H.Huijsing,FrequencyCompensationTech-
niquesforLow-PowerOperationalAmplifiers.Boston,MA:Kluwer,
1995.
[2]J.H.Huijsing,R.Hogervorst,andK.-J.deLanden,“Low-powerlow-
voltageVLSIoperationalamplifiercells,”IEEETrans.CircuitsSyst.I,
vol.42,pp.841–852,Nov.1995.
[3]R.G.H.Eschauzier,L.P.T.Kerklaan,andJ.H.Huijsing,“A100-MHz
100-dBoperationalamplifierwithmultipathnestedMillercompensa-
tionstructure,”IEEEJ.Solid-StateCircuits,vol.27,pp.1709–1717,
Dec.1992.
[4]R.G.H.Eschauzier,R.Hogervorst,andJ.H.Huijsing,“Apro-
grammable1.5VCMOSclass-ABoperationalamplifierwithhybrid
nestedMillercompensationfor120dBgainand6MHzUGF,”IEEEJ.
Solid-StateCircuits,vol.29,pp.1497–1504,Dec.1994.
[5]F.You,S.H.K.Embabi,andE.Sánchez-Sinencio,“Multistageamplifier
topologieswithnestedG
本文发布于:2023-11-24 11:36:13,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1700796974224994.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:Three.doc
本文 PDF 下载地址:Three.pdf
留言与评论(共有 0 条评论) |