FlightTestingAMicroAirVehicle
UsingMorphingForAerorvoelasticControl
MujahidAbdulrahim,HelenGarcia,GregoryF.Ivey,andRickLind
Microairvehiclesareabletoflyinenvironmentswithlittlemaneuveringroom;however,suchflightre-
quireshighagilityandprecisionmaneuvering.Acurrentclassofmicroairvehicleisconstructedwithonly
rudderandelevatorforcontrolauthority.Suchsurfacesarenotoptimalforflightcontrolbutaileronscan
notbeinstalledonthemembraneudforwingsonthevehicles.Morphingisudasanaerorvoelastic
effectorforcontrol.Vehiclesareconstructedusingthreadstocommandacurlofthewingsandusingtorque
rodstocommandatwistofthewings.Ineachca,flighttestsdemonstratetheactuationcaussufficient
deformationofthewingtoresultinsignificantcontrolauthority.Theflightdynamicsshowturnsandspins
canberepeatedlyperformedusingthisaerorvoelasticcontrol.
I.Introduction
Microairvehicles(MAV)arerapidlygainingattentionintheflighttestcommunity.Thesmallsizeandlightweight
ofthevehiclesmakethemespeciallyattractiveforsomemissions.Thevehiclesarequiteportablesomaybeeasily
transportedtoremotelocations.AMAVisinherentlystealthybecauofitssizeandquietbecauofitselectric
propulsion.Furthermore,manytypesofnsorsarebeingminiaturizedandwouldfitwithinthepayloadcapabilities
ofaMAV.
Someareasofoperation,suchasurbanenvironments,requireavehiclethatissmallbutalsoextremelyagile.
Agilityisobviouslyneededsothevehiclecanmaneuverwithinsmallareasandbetweenobstaclesinadenenviron-
ment.Thevehiclemustalsobehighlyresponsivetorejectdisturbanceslikewindgustswhichmaybeconsiderable
nearbuildings.
Theconceptofaerorvoelastictailoringthroughmorphingisbeingstudiedforcontrolonmanyvehicles.The
basicconceptofthisapproachinvolvesactivelychangingtheshapeofavehicletoaffecttheaerodynamicsand,con-
quently,theflightdynamics.Suchcontrolinherentlyusthecontrolandactuationthroughthestructuraldynamics
toaffecttheaerodynamicsasanaerorvoelasticsystem.Theresultingsystemhasdifficultdynamicssodesignand
analysisofaerorvoelasticcontrolisachallenge.
1
Controlthroughaerorvoelasticity,whilenotcommon,iscertainlynotanewconcept.Themostfamousexample
5
isarguablythewingtwistingudbytheWrightbrotherstooperatetheirflier.Academicstudieshavemainlyfocud
onfluttercontrolbutveralexamplesofmaneuveringdesignhaveincludedtheuofdynamicinversionandrobust-
2
nesstoaccountfortheaerorvoelasticdynamics.Inpractice,thedesignisoftenlimitedtosimplyformulatingnotch
3
filterstoavoidinstabilitiesbutretainlow-frequencyperformance.TheActiveAeroelasticWingprojecthasprobably
4
beenthefirstaircrafttodirectlyrequiredesignofanaerorvoelasticcontroller.
15
Morphinghasmorerecentlybeenconsideredaviablemethodofcontrol.Theapproachtochangetheshapeofa
6
vehiclewillclearlyaffecttheflightdynamicsandstaticpropertiessuchasliftanddrag.Issuesremaintobestudied
AmericanInstituteofAeronauticsandAstronautics
astotheuofmorphingfordynamiccontrol.Forinstance,studiesneedtobeperformedascertainingifavehiclebe
morphedwithsufficientmagnitudeandbandwidthtocontroltheshortperiodmotion.Inthisca,theuofmorphing
asaerorvoelasticcontrolforagilityistheissue.
Thispaperconsiderstheuofmorphingasanaerorvoelasticeffectorforcontrolofamicroairvehicle.Several
typesofmorphingareactuallyconsideredonveraltypesofvehicles.Avehiclewith12inwingspanhasthreadsthat
curlthewings.Anothervehiclewith24inwingspanhastorquerodsthattwistthewings.Ineachca,themorphing
isshowntogeneratesignificantcontrolauthorityformaneuvering.Propertiesofturnsandspinsarehighlightedto
demonstratetheeffectofthisaerorvoelasticcontrol.
II.Morphing
Theconceptofmorphingisafairlybroad-rangingidea.Amorphingaircraftisgenerallyacceptedtobeanaircraft
whoshapechangesduringflighttooptimizeperformance.Suchchangesmightincludespan,chord,camber,area,
6
thickness,aspectratio,planformandanyothermetricrelatedtoshape.Themorphingcanevenbeappliedtoacontrol
surfacetoeliminatehinges.
29
Thecontinuingmaturationofmaterialsandcontrolstechnologyisleadingtoconsiderationofmoreextremetypes
ofmorphingforcontrol.Aircraftcanbemorphedinveralbiologically-inspiredwaysthatareappropriateforcontrol.
Forinstance,birdshaveverycomplexwingshapesduringflightwithlargevariationsinsweepandtwistalongthe
entirespan.Furthermore,thespanitlfchangesbadonflightconditionformanybirds.Thecomplicatedmorphing
isactuatedusingjoints,suchaselbowandwrist,alongwiththefeatherstoachievemanywingshapes.
ProgramsbyDARPAandNASAhavebeenextensivelystudyingtheconceptofmorphing.Thestudieshave
showntheaerodynamicbenefits;however,theuofmorphingforcontroldesignhasnotbeenstudiedextensively.
Thelimitedrearchintocontrolhasactuallyconsideredstaticissues.Anaircraftwithmorphinghasbeenshown
tohavegoodperformancewhenfixedatdifferentconfigurations.Controlwasconsideredformorphinginarelated
21
studybutonlyconsideredtheamountofactuationenergyneededtocaumorphing.Theamountofcontrolauthority
26
wasalsostudiedforsmartmaterialsembeddedinastructureinthecontextofsteady-stateopen-loopcontrolledflight.
23
Theissueofcontroldesignformorphingsystemshaspartlybeenoverlookedbecauofthelackofexperimental
testbeds.Manymechanismsformorphinghavebeenconstructedbuttheyarenotyetimplementedonaflightvehicle.
NASAhasconstructedawingwithmorphingcamber.Atofsmartsparshasbeenbuiltthatprovidemanytypes
24
ofmorphing.Mechanismshavealsobeenbuiltsuchasatelescopingspartomorphaspectratioandaninflatable
1920
actuatortochangesweep.Ineachca,themechanismsaretooheavyforaflightsystemsoonlywindtunneltesting
28
ofastaticmounthasbeenperformed.Aninflatableconcepthasactuallybeentakentoflightbutthemorphingisa
22
singleone-timeinflationsoisnotudformaneuveringcontrol.
AprojectparticularlyrelevanttothestudyofmorphingforcontrolistheF/A-18ActiveAeroelasticWing(AAW).
15
TheAAWisusingwingtwisttoaltertheaerorvoelasticdynamicsandgeneraterollmoments.Themorphingisac-
tuallyapassiveeffectresultingfrommovingleading-edgesurfacesoftheflexiblewing.Thattestbedudasimple
mechanismtogeneratemorphinginordertostudytheresultingloadsandcontrolissues.
AMAVisanespeciallyappropriateplatformforconsiderationofmorphing.Theflexibilityofthemembrane
enablestheshapeofthewingstobeeasilychanged.Theresultingchangewillobviouslyaffectthedynamicsand
actasaneffectortoprovidecontrolauthority.Assuch,themorphingofaMAVaddsverylittlecostbutprovides
tremendousbenefit.Thispaperwillconsidersimplestrategiestoprovidemorphingtoemphasizecontrolissues.
Esntially,themethodsofmorphingarenotconsideredasmuchasthedynamicsofmorphing.
III.VehicleDesign
Small,remotelypilotedvehiclesareadaptedformorphingthroughsimplemodificationofthestructure.The
vehiclesarebetween10inand24ininwingspananduavarietyofstructuralmemberstobothwithstandflight
loadsandaccomplishmorphingdeformation.Vehiclesofthissizeareespeciallywellsuitedastestbedsforsimple
morphingstrategiesbecauofthehighstrengthoftheactuatorscomparedtoflightloads.LightweightMAVairframes
2of17
aresubjectedtorelativelysmallairloadsduringflightandmaneuvering.Thesmallaerodynamicloadspermitflexible
materialstobeudthroughoutthestructure.Suchflexiblestructuresareeasilydeformedusingexistingactuators.In
turn,simplemorphingstrategiesforsmallairvehiclesarereadilydevelopedandflighttested.
A.WingCurlingAircraft
Morphingcontrolwasfirstimplementedona10inwingspanmicroairvehicle.Thisvehicleudelevatorand
ruddersurfacesforcontrol,bothofwhichweremountedonaconventionalempennage.Afolding,flexiblewingwas
attachedtothefulageofeachaircraft.Thewingwasmountedoncabanestrutsforthe10inwingspanvehicle,
andonmid-fulagerodsonthelarger12invehicle.Thedifferentwingpositionallowedeachvehicletoundergoa
slightlydifferenttypeofmorphingdeformation.Thetwovehicles,showninFigure1,areesntiallysimilar,apart
fromthewingpositionandtheinclusionofruddercontrolonthe10invehicle.Otherwi,bothvehiclesaccomplish
morphingbycurlingthecompositewingsandchangingtheangleofincidenceononewingatatime.Turncontrol
isaccomplishedbymorphingasinglewingtoincreatheaerodynamicforcesandgeneratearollmomentinthe
directionoppositetothemorphedwing.Forinstance.curlingtheleftwingresultsinapositive(right-handed)rollrate
andanensuingrightturn.
Figure1.WingcurlingmorphingMAVs-10inwingspanhigh-wingaircraft(left)and12inspanmid-wingaircraft(right)
Thefolding,flexiblewingusastripofcarbonfiberweaveastheprimarystructuralmember.Thestripextends
approximately1inbackfromtheleadingedgeofthewing,reachingthepointofmaximumcamber.Thinstripsof
unidirectionalcarbonfiberareembeddedwithintheleadingedgestripandextendtothetrailingedge.Theentire
structureiscuredagainstafemalemoldtoformtheairfoilshape.Finally,anextensiblelatexmembraneisadheredto
theleadingedgeandbattens.Theresultisathin,undercamberedwingsurfacehavingbothflexibilityinthebattens
andcurlingcapabilityintheleadingedgestrip.Thecurvedleadingedgectionisabletoresistconsiderablebending
loadsinthepositivedirection.Undernegativeloading,however,thestructurereadilybucklesanddeformsinboth
curlingandtwisting.
ThistypeofwingstructureisnormallyudforcollapsingthewingofaMAVtofitintoasmallcontainer.It
isalsowellsuitedformorphing,giventhecomplianceofthestructure.Themorphingiscontrolledbyusingsmall
rotaryactuatorsconnectedtohardpointsonthewingstructurebytensionedKevlarcables(Figure2).Astheactuator
adjuststhetensiononthecable,thewingdeformsintoatwistedformthatisappropriateforflightcontrol.Namely,the
resultingshapeincreastheangleofincidenceofthemorphedwingandincreastheliftingforceproduced.When
onewingsideismorphed,aliftdifferentialiscreated,causingtheaircrafttoincurarollrate.
TheextentandshapeofthemorphingcanbeadjustedbyvaryingtheamountoftensionintheKevlarlinesor
adjustingthelocationofthehardpointonthewing.Theshapeisalsodependentonthedirectionofthetensileforce
fromtheKevlar,whichisdeterminedbythepositionoftheactuatorarmwithrespecttothewinghardpoint.Alarge
verticalparationbetweenthetwopoints,asonthe10inaircraft,producesalargelytwistingmotion.However,
asthetensileforceisappliedinamorespanwidirection,asonthelowerwing12inaircraft,thewingexhibitsa
predominantlycurledmotionduringactuation(Figure3).
3of17
Figure2.Undersideviewoffolding,flexiblewingwithtensionedKevlarcables
Figure3.Rearviewof12”MAVshowingundeflected(left)andmorphedwing(right)
Withouttwisting(andstrictlycurling),thewingmorphingdoesnotaffecttherolltrimtosufficientlycontrolthe
aircraft.The12inairplanerequiresanadditionalKevlarstrandconnectedtoahardpointonthetrailingedgetoproduce
asufficientamountofwingtwisting.Esntially,asingleactuatoroutputarmisudtotensiontwocablesconnected
totwopointsonthewing.Theresultingmorphingproducesashapedeformationthatissuitableforlateral-directional
control.Theshapeandthicknessofthecarbonfiberleadingedgestriphasaconsiderableeffectonthemorphing
shape.Thewingsaresomewhatnsitivetodesignorfabricationchanges,whereadisparityinthestructurecancau
adrasticallydifferentmorphingshape.
B.WingTwistingAircraft
Theconceptoftakinganexistingdesignandretrofittingamorphingmechanismwasextendedtoa24invehicleof
similargeometry(Figure4).Aswiththesmalleraircraft,thevehiclewasbadonconventionalconfigurationandud
anelevatorandrudderforcontrol.Theprimarydifferencebetweenthetwoaircraftisthewingstructure,whichus
anominallyrigidunidirectionalcarbonfiberleadingedgeinsteadofthemorecompliantcarbonweave.Additionally,
thewingsurfaceisalessextensiblenylonfilm.Boththewingsurfaceandleadingedgestructurereducethemagnitude
ofthedeformationthatresultsfromflightloads.However,thewingretainedtheflexibilityinthebattens,whichallows
forwingwarpingviaanaluminumtorque-rod.
4of17
PropertyWingTwistingMAVWingCurlingMAV
AmericanInstituteofAeronauticsandAstronautics
Theprimarydifferenceinconceptbetweenthe24inwingwarpingandthe12inwingcurlingisthebidirectional,
positivecontroloftheshapedeformation.Thetorque-rodsareabletoactuatethewingintwistinbothtrailing-edge
upandtrailing-edgedowndirections.Suchcontrolisnotpossibleusingthetensionedcables,asthemechanism
reliesonthewingstructuretoprogressivelybuckleandcurl.Shouldthewingleadingedgedeformtoosoonortoo
far,thecablewoulddevelopslackanddeterioratecontrolofthewingshape.Sincethewingwarpingaircraftusa
stifferleadingedgematerial,theproblemofprematurebucklingorexcessivedeformationunderaerodynamicloadis
largelyeliminated.Thus,thecontrolofthewingshapeislargelyafunctionoftheactuatorposition,althoughthewing
remainesfreetodeformslightlyinrespontoairloads.
IV.FlightTestingandHandlingQualities
A.TurnsandBasicControllability
1.WingCurling
Thecontrollabilityofthewingcurlingaircraftisimprovedoverarudder-elevatorequippedaircraft.Thewingmor-
phingfacilitatesflightpathtrackingoverthemajorityoftheflightenvelope.Atcruiairspeed,themorphingcontrol
issufficientforsmall,stabilizingadjustmentsabouttriminadditiontolargecommands.Althoughsomeroll-yaw
couplingresultsfromthemorphingdeflection,theresponremainsgreatlyimprovedoverruddercontrolforturns.
Thewingcurlingmorphingexhibitsgoodcontrolresponneartheneutral,trimposition.Smallinputsareneces-
saryinperformingturnsandinmakingslightadjustmentstotheflightpath.Underthecircumstances,themorphing
providesanadequatelevelofcontrol.Althoughthephysicaldeformationofthewingsurfaceisnotnecessarilylin-
ear,theaircraftrespondspredictablytovariousmagnitudesofcontrolinput.Inparticular,themorphingissuitable
forbothcommandingturnsandforcorrectingforattitudeperturbationsfromwindgustsorotherdisturbances.Roll
controllabilityremainssatisfactorythroughouttheairspeedrangeencounteredduringcrui,high-speeddives,and
landing/approachphas.
However,rollhandlingqualitiestendstobequitensitivetothelocationofthehardpointonthewingandtothe
tensioninthecable.Slightasymmetriesintherightandleftsidecabletensionsoftencontributestodifficultiesin
controlandnon-zerotrimcondition.Overariesofflights,thecontrolresponchangedslightlyfromvariationsin
thecontrollinkages.Additionally,deteriorationofthelatexmembranenoticeablyreducedthewingsurfacetension.
Thenaturalrubberudinthelatexmaterialdecayedwhenexpodtothesun.Asaresult,thereducedtension
preventedthedeformationfrompropagatingsmoothlythroughoutthewingstructure.Inturn,thetwistdeformation
caudbythebucklingremainedlocalizedaroundthehardpointandreducedcontroleffectiveness.
2.WingTwisting
Turnperformanceisconsiderablyimprovedwiththewingtwistmorphingonthe24inaircraft.Thetorque-rodmech-
anismfacilitatesbasictaskssuchascommandingabankangleandcorrectingforattitudeperturbations.Theaircraft
respontosmallcommandinputsismoreimmediateandconsistentthanthewingcurlingaircraft.Thisimprovement
occurredinpartduetotheimprovedcontrolpoweroftheactuatoroverthemorphingdeflection.Additionally,the
wingtwistgeneratesananti-symmetriccommandthatmorphsthewinginbothpositiveandnegativedirectiononboth
wingssimultaneously.
Inadditiontosubstantiallyimprovingcontrolpower,theanti-symmetricmorphingreducesyawcouplingcompared
tothewingcurlingmorphing.Minimalruddercorrectionsarerequiredtomaintainturncoordinationduringmaneu-
vering.Theimprovedmorphingmechanismofthe24inaircraftcontributedtovastlyimprovedhandlingqualities.
Inparticular,theaircraftperformanceingustywindconditionsbenefitsfromthepositivecontroloverthemorphing.
Highfrequencycontroltaskssuchasattitudecorrectionandstabilizingcontrolareeasilyperformed.
6of17
B.360Rolls
Continuous360
rollmaneuversareperformedforeachaircrafttodeterminethemaximumrollrateachievablewith
morphing.Thetestshelpdeterminetheresponoftheaircrafttoalongmorphingcommand.Theyarealsouful
inidentifyinganyobviouscross-couplinginpitchandyawthatoccurduringthemaneuver.Rolltestsareperformed
withtheaircraftattrimmed,straightandlevelflightatcruiairspeed.Fullmorphingiscommandedtoeitherrightor
leftdirectionsandhelduntiltheaircrafthascompleteda360
rotationalongtherollaxis.
1.WingCurling
Thewingcurlingmorphingprovidesasufficientlevelofcontroltoeffectacompleteroll.Despitetheasymmetry,
theaircraftexperiencesarelativelysmalldivergenceinflightpathduringthemaneuver.Undermaximummorphing
deflection,astabilizedrollrateisachievedwithin0.5conds.Maximumrollrateisapproximately,achievable
inbothleftandrightrolldirections.
Duringtherollmaneuver,theaircraftprescribesanalmosthelicalflightpath.Aslightgaininaltitudeisincurred
halfwaythroughthemaneuver,followedbyadescendingreturntolevelflight.Atthecompletionoftheroll,the
aircraftistypicallypitcheddownslightlyandmayhaveasmallheadingchange.
2.WingTwisting
Theaircraftisabletoachieveahighlevelofrollperformanceusingwingtwistmorphing.Theperformanceis
improvedcomparedtowingcurling,rudder,orevenconventionalailerons.Atthemaximummorphingdeflectionof
approximately10twist,theaircraftachievesastabilizedrollrateofwithin0.25conds.Atnearly3rolls
percond,aircraftexperiencesverylittleflightpathdivergenceorcross-coupling.Duringthemaneuver,theaircraft
wingsbecomevisiblyblurredfromtherotation,whilethefulageappearstorotateaboutthecenterlineaxis.Similar
MAVsusingrigidwingsandhingedconventionalaileronswereabletoachieveamaximummeasuredrollrateof
.
Recoveryfromtherollmaneuverisalsowithin0.25condsofneutralizingmorphingcommand.Rollperformance
changesslightlyovertheairspeedrange,withhigherairspeedsexhibitinghigherrollrates.However,thecontrol
remainspositiveandsufficientfromnear-stallspeeduptothemaximumdivespeed.
C.Spins
Controlofamorphingvehiclebeyondthestallboundariesisanotherrelevantfacetoftheflightdynamics.Agreater
degreeofcontroloverthevehiclegeometrymayimprovestall/spinavoidanceor,converly,evencommandade-
velopedspinmaneuver.Thelargedegreeofcontrolaffordedbythemorphingmechanismcouldbebeneficialin
generatinganti-spinforcesandrecoveringfromastabilizedspin.
Thespincharacteristicsofthevehiclesareinvestigatedbymanually-pilotedmaneuvers.Spinmodesareiden-
tifiedusingclassicalspinentrytechniques.Theindividualmodesareproducedbytrial-and-errorandhavebeen
18
reproducedoververalflighttests.Thefollowingdiscussionprentssomeofthepredominantspintypesencoun-
teredduringtheflighttests.Notethespinsallumorphingbecauthespincharacteristicswerenotnearlyas
significantusingonlyrudderandelevator.
1.WingCurling
Spinmodesofthe10inand12invehicleswereinitiallyencounteredduringflighttestsofaggressivemaneuvers.
Largemorphingcommandscoupledwithpositiveelevatorcommandsresultedinsuddenandviolentrollsoppositeto
thecommandeddirection.Thisbehaviorwasmostoftenobrvedatlowerairspeeds,leadingtotheidentificationofa
considerabledeficiencyinthewingcurlingmethod.
Thewingcurlingmorphingisabletocontrolrollrateprimarilybyincreasingtheangleofattackofthemorphed
wing.Thedeformationalsoencompassspanwicurling,althoughtheeffectoftwistingtoincreatheincidence
7of17
appearstobethepredominantfactorcontrollingrollmoment.Undertypicalflyingconditionsandmoderatemorphing
deflections,themorphingisabletogenerateaproverliftdifferential(i.e.inthecommandeddirection)andeffecta
rollratechange.Thisisthesamecharacteristicdescribedintheturnandrollperformancections.
However,asthemorphingcommandbecomeslarge(causingalargechangeinincidenceangle)andiscoupled
withpositiveelevatordeflection,theangleofattackofthemorphedwingcanexceedthestallangle,causingavere
lossofliftinthedeformedregion.Theresultingliftdifferentialbetweenthetwowingsbecomesadvertothe
commandeddirection,leadingtoanopposite-directionroll.Whilethisisoccasionallyrecoverable,suchanasymmetric
stalltypicallydivergesintoaspin.Theoverwhelmingmajorityoftheencounteredspinswereterminal,resultingin
theaircraftimpactingthegroundinastabilizedspin.
Recoveryfromastall-spinisquitedifficultforanumberofreasons.Therearcherssuspectthatthestallresulting
fromexcessivemorphingpositioncausacollapofthelow-pressureregionabovethewing.Thiscollapreduces
thetensiononthecontrolcableandpreventsthewingfromproperlyextendingandreturningtotrimflightcondition.
Additionally,themorphingmechanismpermitsthepilottostrictlyincreatheangleofattackofthewings.Thus,
inopposingtherollrateincurredduringaspin,thepilotmustincreatheangleofattackoftheopposite(unstalled)
wing,whichmayfurtherdecaythecontrollabilityoftheaircraft.
Somespinstestsresultedinasuccessfulrecoverytolevelflight.Thespinsweretypicallyinitiatedusingagentler
stallentryandsmallermagnitudesofelevatorandmorphingcommandinputs.Flightpathduringthespinsrembled
adescendinghelicalspiral.Recoveryprocedureentailedneutralizingcontrolsurfaceandmorphingdeflectionand
allowingtheMAVtolf-recoverfromthespin.Oncestabilized,elevatorcommandwasudtopullupfroma
verticaldivetolevelflight.However,becauofthedifficultiesinconsistentlyrecoveringfromadeparture,spins
werenotconsideredasufulmaneuversforthistypeofMAV.
2.WingTwisting
Figure6showsthecommandandrotationratesduringaconventionalspin.Thismaneuverisinitiatedfromlevelflight
bycommandingpositiveelevatortoincreathepitchrateandangleofattack.Rightruddercommandisthenapplied
togenerateayawingmomentastheaircraftapproachesstall.Inthisca,theyawcausanasymmetricstalland
startsthespinrotation.Theaircraftresponisrelativelyconstantthroughoutthemaneuver,althoughtherollrate
tendstobuildupastheflightpathchangesfromleveltoavertical.Theautorotationcontinuesaslongasthepositive
elevatorandruddercommandsareheld.Oncethecommandsareneutralized,therotationslowsandcomestoastop
withlittleornooppositerudderinput.Positiveelevatorisudtorecovertheaircrafttolevelflightat363conds.
Althoughthistypeofspinhasbeenexperiencedveraltimes,theentryprocedurestendtobedifficulttoreproduce.
Specifically,applyingruddercommandatalowangleofattack(tooearly)preventsastallfromdevelopingandresults
inahigh-speedspiraldive.BothwindtunnelandCFDanalysishaveshownthatthethin-undercamberedairfoilsud
onthevehiclehavedelayedstallrespon.Thisaffordssuchvehiclesincreadresistancetostall-spindeparture,at
leastforpositiveloadings.
Theeffectofmorphingonpositive(upright)spinsistoacceleratetheontofthespinandtoassistintherecovery
process.Thiseffectismostpronouncedduringcross-coupledcontrols,wheretherudderdirectionisoppositetothat
ofthemorphing.Insuchaca,thehighangleofattackattheinsidewingtipisfurtherincreadbythemorphing
actuation,leadingtoanobrvedstall-spin.Releasingthemorphingcommandeffectivelyreducesthewingangleof
attackandproducesnearlyimmediaterecoveryfromanupright,conventionalspin.
Conventionalspinsarealsoperformedwithnegative(down)elevatoractuationtoproduceastarklydifferentre-
spon.Inparticular,thespinmodesobrvedareofconsiderablyhigherenergy.Therotationratesofanegative
spincomparedwithanuprightspintendtobebetween2to6timesgreater.Badonrudimentaryanalysis,thestall
characteristicsofathinunder-camberedwingatnegativeanglesofattackarefarmoreverethanthecharacteristics
athighanglesofattack.Inflight,theairplaneisobrvedtohaveaveryimmediateandviolentrespontolarge
negativeelevatorcommands.Suchaninputisbelievedtocauanegativestallquickly,whereanyasymmetryabout
theyawaxisproducesalargerateofrotation.
Figure7showsanidentifiednegativespinmodeinitiatedbyamorphingcommandwithelevatorandrudder.At
401conds,theaircraftrespondstotheconstantcontroldeflectionbybuildinguprotationratesonallthreeaxis.The
8of17
40
30
50
10
0
R
e
s
p
o
n
s
e
(
d
e
g
/
s
)
C
o
m
m
a
n
d
(
d
e
g
)
20
0
−10
−20
−30
−40
359360361362364363
elevator
rudder
morphing
−50
roll rate
pitch rate
yaw rate
360361359362363364
−100
Time (s)
Time (s)
Figure6.PilotCommands(left)andRespons(right)duringconventionalspin
entryintothemaneuverisrelativelygradualandonlyafteronecondofcontrolinputshavethepitch,roll,andyaw
ratesbecomesignificant.
Thisparticulartypeofspintendstostabilizeindependentlyoftheinitialpro-spincontroldeflections.Att=402
conds,thecontrolsarerelead,whiletheaircraftcontinuestospin.Theapplicationofpositiveelevator(forrecov-
ery)shortlyafterwardsappearstomaintainthespinforsometime.Itisonlywithcorrectiveoppositeruddercommand
thattheaircraftarreststherotationandrecoversfromthespin.
Itisdifficulttodrawsolidconclusionsfromthisspinquence.However,therearchersattributethetwodistinct
modesobrvedtobeacaofprimaryandcondaryspincharacteristics,wherethelatteriscaudbyapremature
recoveryattempt.Similarspinshavebeenobrvedfrominbothleftandrightdirections.
40
30
elevator
rudder
morphing
50
10
0
R
e
s
p
o
n
s
e
(
d
e
g
/
s
)
C
o
m
m
a
n
d
(
d
e
g
)
20
0
−10
−20
−30
−40
400401402403404405
−50
roll rate
pitch rate
yaw rate
401402400403404405
−100
Time (s)
Time (s)
Figure7.PilotCommands(left)andRespons(right)duringspin
Alternatively,Figure8showsaconsiderablydifferentspinbehavior.Althoughinitiatedbycommandssimilarto
thepreviousspins,thistypeofspinexhibitsacyclicorperiodicmotion.Itisperhapswiththetimingofthecontrol
inputsthatadifferencecanbefound.WhereasinFigure9,theelevatorinputlaggedbehindtherudderandmorphing
inputs,thespindepictedbyFigure8showstheelevatorleadingslightly.Theprecieffectthishasontheairflowis
unknown.However,theresultingaircraftresponisshowntobe6timesgreaterinmagnitudethanaconventional
spin.
Fromlevel,trimmedflight,theaircraftissubjectedtofullleftwingmorphing,fullleftrudder,andfullnegative
elevatorcommand.Theinitialreactionoftheaircraftistopitchdownataconstantrateandincuraleftrolland
9of17
yawfromthewingmorphingandrudderdeflections.Oncethewinghasreachedthenegativestallangle,presumably
facilitatedbythedeflectedwing,arapidspinensues,nearlydoublingtherollandyawratesandreducingpitchrate.
Thispatternisrepeatedfourtimesthroughoutthespin,allwhilepilotcommandsareheldconstant.Eachcycleis
proceededbyaperiodoflowmomentum,followedbyasharpchangeinpitchratealongwithpeaksinboththeroll
andyawrates.
Whilethedynamicsofsuchamaneuverarenotverywellunderstood,itappearsthatthemorphingofthewing
playsalargerollinbothinducingandrecoveringfromthespin.Forinstance,similarspinentriesperformedwithout
morphingarecharacterizedbyconsiderablylowerrotationratesandacontinuationofthespinaftercommandinputs
areneutralized.However,therecoveryofthiscyclicspinmodeoccursnearlyimmediatelyafterthecontrolsare
neutralized.Asenatt=176inFigure8,theaircraftisattheperiodofhighestmomentduringreturntoneutral
command.Therotationratescontinuetofollowthecharacteristicspikepatternandfinallyconvergestozerorotation
rates.
40
30
elevator
rudder
morphing
50
roll rate
pitch rate
yaw rate
10
0
R
e
s
p
o
n
s
e
(
d
e
g
/
s
)
C
o
m
m
a
n
d
(
d
e
g
)
20
0
−10
−20
−30
−40
171172173174175176177
−50
−100
171172173174175176177
Time (s)
Time (s)
Figure8.PilotCommands(left)andRespons(right)duringcyclicspin
Inflight,thishastheeffectofstoppingtheaircraftinmid-rotation.Unliketheotherspinmodesobrved,the
cyclicspinmodehasnoapparentrecoveryapartfromneutralizingthecontrols.Theaircraftwillcontinuetotheendof
agivencycle,cearotation,andsimplyflyaway.Theno-downrecoverytypicalofotherspinmodesiscontrasted
withanimmediaterecoverytolevelflight.
TheufulnessofthecyclicspinmodedepictedinFig.8isperhapsquestionable,althoughitmaygiveritoa
differentmodeofmaneuveringformorphingaircraft.Forinstance,theabovemaneuvermaybeufulforacontrolled
verticaldisplacement.Oninitiatingtheentry,theairspeedquicklydecaysandstartstheaircraftonarelativelyslow
verticalflightpath.Duringthisportionofthemaneuver,theaircraftincursariesofhighrateofrotations,each
paratedbyaperiodoflowmomentum.Asevidencedbytherecoveryfromthemaneuver,thisperiodcanbeud
torecovertheaircraftintostableflight.Whilepreviousspinmodesrequiredcorrectiverudderandsignificantaltitude
lossforrecovery,thiscyclicspinmodestoppedoncethecontrolswereneutralized.
Attitudeandairspeedentryconditionsintothespintrialshavebeenobrvedtohavesomeimpactonthestabilized
spinmodes;however,accuratemeasurementsoftheentryconditionswerenotpossible.Thelackofpressurensors
ontheairframeprecludedthegatheringofsuchdata.Excitationofaparticularspinmodedependedonthepilotability
topositiontheaircraftproperlybadoncontrolfeelandvehicleobrvations.
Thespinentrymaneuverswerealsoattemptedforothercontrolcombinations.Specifically,cyclicspinswere
attemptedwithoutwingtwistingbyusingnegativeelevatorandrudderdeflection.Thetrialsresultedinastabilized
spinbutwithconsiderablylowerrotationratesthanthecyclicspin.Additionally,thismodedidnotexhibittheperiodic
behaviorachievedthroughwingtwistingduringaspin.
10of17
V.Modeling
A.WingCurling
Flightdatafromthevehicleisanalyzedtoestimatemodelsoftheflightdynamics.Severaltechniqueswereattempted
toestimatethemodels,includingsystemidentificationandparameterestimation,butwithlimitedsuccess.This
2732
vehicleisparticularlydifficulttomodelbecauthemorphingcaustime-varyingasymmetrieswhichviolatemany
assumptionsudbystandardroutines.
Furthermore,theestimationisdifficultbecauoflimitedflightdata.TheMAVisequippedwithonlygyrosand
accelerometersbuttheflightdatafromtheaccelerometersisactuallytoonoisytobeufulformodeling.Thus,veral
criticalmeasurements,suchasangleofattackandangleofsideslip,arenotavailable.Somedynamicsarenoteasily
obrvable,especiallyintheprenceofnoi,usingonlytheavailablensors.
Anonlinearauto-regressivemodelisudtoreprenttheflightdynamics.Thegeneralformofthismodelis
showninEquation1.Thismodelrelatesthegyromeasuresofrollrate,
,pitchrate,,androllrate,,tothe
morphingcommand,
,andelevatorcommand,,atthesamplinginstanceof.Thematrices,
and
,reprentthedynamics.
(1)
ThemodelinEquation1containsquadratictermsoftheratesandcommands.Suchquadratictermsareincluded
toaccountforunknownrelationshipsbetweenthewingshapeandtheaerodynamics.Inthisca,thetermsutilizean
absolutevaluetoallowthecontributionsfromthequadraticstochangeinsign.
ThemodelinEquation1alsocontainscouplingterms.Thetermsmultiplythegyromeasurementsbyeach
other.Thestandardequationsofmotionforarigid-bodyaircraftincludecouplingtermswhichscalebythemoments
ofinertia.ThisMAVisobviouslyasymmetricduringthemorphingsothecouplingareesntial.
33
Finally,Equation1computestheupdatetothegyromeasurementsasafunctionofthemeasurementsfromtwo
previoussamplingtimes.Thetermsareincludedtoaccountforthetime-varyingnatureofthedynamicswhichari
byalteringthewingshape.Thedynamicsareassumedtobesufficientlydescribedbytwosamplingtimesalthougha
rigorousstudyofthesamplingtimeswasnotconducted.
Thevaluesofthematrices,
and,inEquation1aredeterminedbyaleast-squaresfittotheflightdata.The
resultingmodelisudtosimulatetheresponstothemorphingandelevatorcommands.Suchresponsareshown
inFigure9.
TheresponsinFigure9demonstratethemodelcapturesthebasictrendofthedynamicsbutisnotcompletely
accurate.Thepredictedresponsarenotperfectmatchestothemeasuredresponsbutyettheyclearlyshowsimi-
larities.Thus,themodelindicatesthetime-varyingasymmetriesassociatedwiththemorphingcausnonlinearities
andcouplingintheflightdynamicsofthisMAV.
11of17
155
10
datadata
simsim
8
6
data
sim
50
0
−5−5
−10
−15−10
01234560123456
P
i
t
c
h
R
a
t
e
(
d
e
g
/
s
)
R
o
l
l
R
a
t
e
(
d
e
g
/
s
)
Y
a
w
R
a
t
e
(
d
e
g
/
s
)
4
2
0
−2
−4
−6
Time (s)Time (s)
−8
0123456
Time (s)
Figure9.MeasuredandPredictedResponsforRollRate(left),PitchRate(middle)andYawRate(right)
B.WingTwisting
Flighttestingoftheactivewing-shaping24inMAVisperformedintheopenareaofaradiocontrolled(R/C)model
fieldduringwhichwindconditionsrangefromcalmto7knotsthroughouttheflights.Oncetheflightcontroland
instrumentationsystemsarepoweredandinitialized,theMAVishand-launchedintothewind.Thislaunchisan
effectivemethodtoquicklyandreliablyallowtheMAVtoreachflyingspeedandbeginaclimbtoaltitude.
ThisairplaneiscontrolledbyapilotonthegroundwhomaneuverstheairplanevisuallybyoperatinganR/C
transmitter.Thedataacquisitionsystembeginsrecordingassoonasthemotorispowered.
Thisaircraftdesignallowseitherrudderorwingshapingtobeudastheprimarylateralcontrolforstandard
maneuvering.Theairplaneiscontrolledinthismannerthroughturns,climbs,andlevelflightuntilasuitablealtitude
isreached.Ataltitude,theairplaneistrimmedforstraightandlevelflight.Thistrimestablishesaneutralreference
pointforallthecontrolsurfacesandfacilitatesperformingflighttestmaneuvers.
Open-loopdataistakentoindicatetheflightcharacteristicsoftheMAV.Specifically,theratesandaccelerations
aremeasuredinrespontodoubletscommandedparatelytothervos.Severaltsofdoubletsarecommanded
ranginginmagnitudeanddurationtoobtainarichtofflightdata.
ThedynamicsoftheMAVinrespontoruddercommandsisinvestigatedtoindicatetheperformanceofthe
traditionalconfigurationforthisMAV.Areprentativedoubletcommandandtheresultingaircraftresponsare
showninFigure10.
15
10
150
100
50
0
−50
−100
−150
150
100
Y
a
w
R
a
t
e
(
d
e
g
/
s
e
c
)
123450
R
o
l
l
R
a
t
e
(
d
e
g
/
s
e
c
)
R
u
d
d
e
r
C
o
m
m
a
n
d
5
0
−5
−10
−15
0123456
50
0
−50
−100
−150
−200
012345
Time(c)
−200
Time(c)
Time(c)
Figure10.DoubletCommandtoRudder(left),RollRaterespon(middle),andYawRaterespon(right)
TherollrateandyawratemeasuredinrespontothiscommandareshowninFigure10.Therollrateissufficiently
largeandindicatestherudderisabletoprovidelateral-directionalauthority;however,theyawrateisclearlylarger
thandesired.Actually,theyawrateissimilarinmagnitudetotherollratesothelateral-directionaldynamicsarevery
tightlycoupled.Theeffectoftherudderinexcitingthedutchrolldynamicsisclearlyevidencedinthisrespon.
12of17
Doublets,suchasthepulquenceshowninFigure11,arealsocommandedtothemorphingrvo.
8
6
150150
100100
5050
00
−50−50
−100−100
−150−150
M
o
r
p
h
i
n
g
C
o
m
m
a
n
d
4
2
0
−2
−4
−6
−8
00.511.52
Y
a
w
R
a
t
e
(
d
e
g
/
s
e
c
)
0.511.5200.511.520
R
o
l
l
R
a
t
e
(
d
e
g
/
s
e
c
)
−200−200
Time(c)
Time(c)Time(c)
Figure11.DoubletCommandtoWingtwistmorphing(left),Rollraterespon(middle),andYawRaterespon(right)
TherollrateandyawrateinFigure11aremeasuredinrespontothedoublet.Themeasurementsindicatethe
rollrateisconsiderablyhigherthantheyawrate.Thus,themorphingisclearlyanattractiveapproachforrollcontrol
becauofthenearly-purerollmotionmeasuredinrespontomorphingcommands.
Thedatafromopen-loopflightsisthenudtoapproximatealineartime-domainmodelusinganARXapproxi-
mation.Thismodelisgeneratedbycomputingoptimalcoefficientstomatchpropertiesobrvedinthedata.The
27
assumptionoflinearityisreasonablesincethemaneuversaresmalldoubletsaroundatrimcondition.
Theresultingmodel,havingpolesat-4.95and-0.1194,isudtosimulateresponsoftheaircraft.Thesimulated
andmeasuredvaluesofrollandyawratesareshowninFigure12.
150150
100100
5050
00
−50−50
−100−100
−150−150
−200−200
00.511.5200.511.52
Y
a
w
R
a
t
e
(
d
e
g
/
s
e
c
)
R
o
l
l
R
a
t
e
(
d
e
g
/
s
e
c
)
Time(c)Time(c)
Figure12.Simulated()andActual(—)RollRate(left)andYawRate(right)ResponstoaDoublet
Thesimulatedresponsshowgoodcorrelationwiththeactualdata.Themodelisthusconsideredareasonable
reprentationoftheaircraft.Theexistenceofsuchamodelisimportantforfuturedesignofautopilotcontrollersbut
itisalsovaluableforinterpretingthemorphing.Esntially,theabilitytoidentifyalinearmodelwithpolesrelating
totherollconvergenceandspiralconvergencemodesindicatetheaircraftwithmorphingactslikeanaircraftwith
ailerons.
13of17
VI.NewMorphingAircraftDesigns
A.Multi-pointWingShaping
Badonthesuccessofthewingwarpingaircraft,anadditionalvehiclewasdevelopedtoincorporateincread
controlofthewingshape.Specifically,thevehicleemployedariesofconcentrictorque-tubesparstocontrolthe
wingincidenceangleatfourpointsalongthespan.Suchamechanismextendedtheideaofwingtwistingbeyond
asingleactuationpointtoamorphingoftheentirewingsurface.Figure13showsthewingundergoingmorphing
toboththewingtipspartubeandtobothwingtipandmidboardspartubes.Thedeformationisvisuallyapparentby
examiningthelightreflectionsoffoftheleadingedgeandtheshapeofthetrailingedge.
Figure13.WingshapingMAVshowingneutralposition(left),wingtipmorphing(middle),andfullwingmorphing(right)
Concentrictubesparsactasbothprimaryload-bearingmembersandascontrollinkages(torque-tubes).Alarge
diametertubeisfixedtothefulageandactsasabearingsupportfortherotatingspars.Therootctionofthewing
surfaceisalsoattachedtothistube,creatinganimmobilejointbetweentheinboardwingsurfaceandfulage.Two
smallertubes,onewithintheother,aresupportedbythefixedtube.Thesmallesttubeextendsthefullspan,while
thecentertubeextendstothe60%position.Eachoftheoutboardandmidboardsparsisactuatedintwistviarvos
mountedinthefulage(Figure14).Eachrvoisthenabletocommandtheincidenceangleofthecorresponding
wingctionindependently.
Aflexiblewingsurfaceisattachedtoeachofthethreewingspartubes.Attachmentpointsnearthesparjointsare
leftunconstrainedinpitchangle.Thisfreedomallowstheincidencetosmoothlytaperbetweentherigidlyattached
to
ctionsofthewingsurface.Thisstructurepermitstwistmorphingofeachcontrolledwingctionfrom
incidenceangle.Eachofthefourwingctionsarecommandedindependently,allowingforconsiderabledifferential
orcollectiveconfigurability.
Figure14.Spartorque-tubemorphingactuators.The4frontrvosrotateconcentricsparctions,aft2controlrudderandelevator
14of17
Theaircrafthasundergonebasicperformanceandhandlingflighttests.Initialresultsindicatethattheaircraft
iscapableofachievingsignificantlyhigherperformancelevelsthanthepreviousmorphingcastudies.Adequate
rollcontrolisachievedbydifferentiallyactuatingthewingtipspars.Thehandlingqualitiesandmaximumrollrate
aresimilartothe24inwingtwistingaircraft.Actuatingtheentirewingdifferentially(i.e.usingbothwingtipand
midboardctions),achievesrollratesandperformancemeasuresconsiderablyhigher.Aswiththewingtwisting
aircraft,atmaximumrollrate,themulti-pointwingshapingvehiclebecomesdifficulttoeandestablishorientation.
Themorphingisalsobeingconsideredforuinconjunctionwithothercontrolsurfaces.Basicflighttestsof
combiningcollectivemidboardwingdeflectionwithelevatorcommandhaveshownpotentialforimprovementin
pitchrateperformance.Additionally,thismorphingmaybesuitedforquasi-staticallyreconfiguringthewingtwistto
optimizespanwiliftdistributioninflight.Suchtechniquesarecurrentlyudbysailplaneandcommercialjetpilots
toaltertheliftpropertiesofthewingforcrui,steepdescent,andmaximumperformanceflightphas.
B.VariableGull-WingAngle
Preliminaryflighttestshavebeencompletedofabiologically-inspiredvariationofthe24”morphingaircraft.This
MAVincorporatesavariableanglegull-wingmechanism,Figure15,thatisudtochangetheanglebetweenthe
inboardandoutboardwingctionsinflight.Themechanismusalinearlead-screwactuatortoquasi-staticallyvary
thegull-wingposition.Thequasi-staticmorphingisudtoinvestigatetheeffectofsuchadeformationontheflight
performanceofthevehicle.Specifically,itisofinterestforanaircraftwithanexpandedflightenvelope,capableof
performinglowairspeed,precimaneuvering,aswellashighspeeddashesandlongrangeenduranceflights.
Figure15.VariableGull-WingAngleMAV.Negativegull-wing(left),neutralgull-wing(middle),andpositivegull-wing(right)
Flighttestresultshaveshownthatthegull-wingangleconsiderablyaffectsbasicperformancemetricsoftheaircraft
suchasglideratio,stallcharacteristics,climbratio,andhandlingqualities.
C.Airigami-Foldingwing/tail
Aquasi-staticmorphinghasalsobeenimplementedonatandem-wingmicroairvehicle,Figure16,toallowtheaircraft
toachievetwodistinctmissionrequirementsinasingleflight.Theaircraftisdesignedtoachievestable,controllable
forwardflightforclimb,crui,andloiterphas,thentransitiontoreverflightforaslow,verticaldescent.Asingle
controlactuatorisudtosweepbothfrontandaftwingsforward,inadditiontocollapsingandextendingvertical
stabilizersurfaces.
Theaircraftincorporatesadual-wingsweepanglemorphingtochangethelocationoftheaircraftcenter.The
wingsaredesignedtosweepfarenoughforwardsuchthattheneutralpointbecomesforwardofthecenterofgravity.
Inthisconfiguration(Figure17),forwardflightisdestabilizedandreverflightisstabilized.
Inordertoimprovereverflightstability,thewingsweepincorporatesacollapsingverticalstabilizerontheaft
wingandanexpandingstabilizerontheforwardwing.Eachstabilizerisinitiallybuiltintothewingstructureand
allowedtoalongfoldnylonhinges.
Reverflightisachievedonlyindescentswithanearverticalflightpath.Assuch,thethrustfromthepropeller
rvesasbothadragproducerandasastabilizingdevice.Theprimarypurpoofthewingsandverticalstabilizer
duringthisdescentprofileistopreventthevehiclefromdivergingfromtheverticalattitude.Inthisorientation,the
thrustrvestodirectlycounteracttheweightoftheaircraftandslowthesinkrate.ThecurrentpowerplantusaDC
electricmotorwitha4:1gearreductiontoturna4”plasticprop.Thethrusttoweightratiooftheaircraftisslightly
lessthanone,allowingforasubstantialreductioninthesinkrateatfullthrottle.Alternativemotoroptionsmaybe
15of17
Figure16.Topview(left)andsideview(right)ofAirigamishowingunswept,forwardflightconfiguration
Figure17.Topview(left)andsideview(right)ofAirigami,showingsweptandfoldedreverflightconfiguration
udtoincreathrusttoweightratiotogreaterthanone.Insuchaca,thethrustcouldbeudtoachieveazerosink
rateandhovertheaircraftduringthedescentpha.Althoughtheaircraftisdesignedprimarilyforverticalrever
flights,otherdescentmodessuchasacontrolledflatspinorhigh-alpha,oscillatoryfallingleafmodemaybepossible
withthesweepmorphing.
VII.Conclusions
Thispaperdemonstratesthatmorphingisparticularlysuitableforaclassofmicroairvehicles.Themembrane
wingsonthevehiclescanbemorphedwithlittlepowerbutwithsignificantbenefits.Mechanismsthatarerelatively
simpleareshowntocaulargedeformationsusingdifferentstrategies.Ineachca,themorphingprovidesaeror-
voelasticcontrolthatisclearlyadequateformaneuvering.Flighttestsdemonstratethemorphingisabletocommand
turnsandspinswithsufficientauthorityforprecisionmaneuvering.Assuch,thewingshapingisanenablingtechnol-
ogyprovidingsomelevelofmissioncapabilitytothisclassofMAV.
References
M.J.Brenner,AerorvoelasticModelingandValidationofaThrust-VectoringF/A-18Aircraft,NASA-TP-3647,September1996.
I.M.Gregory,“DynamicInversiontoControlLargeFlexibleTransportAircraft,”AIAA-98-4323,1998.
16of17
S.M.JoshiandA.G.Kelkar,“InnerLoopControlofSupersonicAircraftinthePrenceofAeroelasticModes,”IEEETransactionson
ControlSystemsTechnology,Vol.6,No.6,November1998,pp.730-739.
B.D.Caldwell,“FCSDesignforStructuralCouplingStability,”TheAeronauticalJournal,December1996,pp.507-519.
E.Livne,“IntegratedAerorvoelasticOptimization:StatusandDirection,”JournalofAircraft,Vol.36,No.1,January-February1999,
pp.122-145.
R.W.Wlezien,G.C.Horner,A.R.McGowan,S.L.Padula,M.A.Scott,R.J.Silcox,andJ.O.Simpson,“TheAircraftMorphingProgram,”
AIAA-98-1927,April1998.
J.B.Davidson,P.Chwalowski,andB.S.Lazos,“FlightDynamicSimulationAsssmentofaMorphableHyper-EllipticCamberedSpan
WingedConfiguration,”AIAA-2003-5301,August2003.
P.G.Ifju,D.A.Jenkins,S.M.Ettinger,Y.Lian,W.Shyy,andM.R.Waszak,“Flexible-WingBadMicroAirVehicles,”AIAA-2002-0705,
January2002.
H.Garcia,M.Abdulrahim,andR.Lind,“RollControlforaMicroAirVehicleusingActiveWingMorphing,”AIAA-2003-5347,August
2003.
Y.LianandW.Shyy,“Three-DimensionalFluid-StructureInteractionsofaMembraneWingforMicroAirVehicleApplications,”AIAA-
2003-1726,April2003..
M.R.Waszak,L.N.Jenkins,andP.G.Ifju,“StabilityandControlPropertiesofanAeroelasticFixedWingMicroAirVehicle,”AIAA-2001-
4005,August2001.
G.A.Fleming,S.M.Bartram,M.R.Waszak,andL.N.Jenkins,“ProjectionMoireInterferometryMeasurementsofMicroAirVehicleWings,”
ProceedingsoftheSPIEInternationalSymposiumonOpticalScienceandTechnology,Paper448-16,August2001.
S.M.Ettinger,M.C.Nechyba,P.G.Ifju,andM.R.Waszak,“Vision-GuidedFlightStabilityandControlforMicroAirVehicles,”Proceedings
oftheIEEEInternationalConferenceonIntelligentRobotsandSystems,October2002,pp.2134-2140.
M.R.Waszak,J.B.Davidson,andP.G.Ifju,“SimulationandFlightControlofanAeroelasticFixedWingMicroAirVehicle,”AIAA-2002-
4875,August2002.
E.W.Pendleton,D.Bestte,P.B.Field,G.D.Miller,andK.E.Griffin,“ActiveAeroelasticWingFlightRearchProgram:Technical
ProgramandModelAnalyticalDevelopment,”JournalofAircraft,Vol.37,No.4,2000,pp.554-561.
S.Tung,andS.Witherspoon,“EAPActuatorsforControllingSpaceInflatableStructures,”AIAA-2003-1741,April2003.
M.J.Solter,L.G.Horta,andA.D.Panetta,“AStudyofaPrototypeActuatorConceptforMembraneBoundaryControl,”AIAA-2003-1736,
April2003.
R.W.Stone,andB.E.Hultz,SummaryofSpinandRecoveryCharacteristicsof12ModelsofFlying-WingandUnconventional-TypeAir-
planes,NACA-RM-L50L29,March1951.
M.AmprikidisandJ.E.Cooper,“DevelopmentofSmartSparsforActiveAeroelasticStructures,”AIAA-2003-1799,2003.
J.Blondeau,J.RichesonandD.J.Pines,“Design,DevelopmentandTestingofaMorphingAspectRatioWingusinganInflatableTelescopic
Spar,”AIAA-2003-1718.
J.Bowman,B.SandersandT.Weisshar,“EvaluatingtheImpactofMorphingTechnologiesonAircraftPerformance,”AIAA-2002-1631,
2002.
D.Cadogan,T.Smith,R.LeeandS.Scarborough,“InflatableandRigidizableWingComponentsforUnmannedAerialVehicles,”AIAA-
2003-1801,2003.
C.E.S.CesnikandE.L.Brown,“ActiveWarpingControlofaJoined-WingAirplaneConfiguration,”AIAA-2003-1716,2003.
J.B.Davidson,P.ChwalowskiandB.S.Lazos,“FlightDynamicSimulationAsssmentofaMorphableHyper-EllipticCamberedSpan
WingedConfiguration,”AIAA-2003-5301,2002.
J.M.GrasmeyerandM.T.Keennon,“DevelopmentoftheBlackWidowMicroAirVehicle,”AIAA-2001-0127,2001.
C.O.Johnston,D.A.Neal,L.D.Wiggins,H.H.Robertshaw,W.H.MasonandD.J.Inman,“AModeltoComparetheFlightControlEnergy
RequirementsofMorphingandConventionallyActuatedWings,”AIAA-2003-1716,2003.
L.Ljung,SystemIdentification,PrenticeHall,EnglewoodCliffs,NJ,1987.
P.deMarmierandN.Wereley,“MorphingWingsofaSmallScaleUAVUsingInflatableActuatorsforSweepControl,”AIAA-2003-1802.
B.Sanders,F.E.EastepandE.Forster,“AerodynamicandAeroelasticCharacteristicsofWingswithConformalControlSurfacesforMor-
phingAircraft,”JournalofAircraft,Vol.40,No.1,January-February2003,pp.94-99.
D.Viieru,Y.Lian,W.ShyyandP.Ifju,“InvestigationofTipVortexonAerodynamicPerformanceofaMicroAirVehicle,”AIAA-2003-
3597,2003.
M.R.Waszak,L.N.JenkinsandP.Ifju,“StabilityandControlPropertiesofanAeroelasticFixedWingMicroAerialVehicle,”AIAA-2001-
4005.
K.W.Iliff,“AircraftParameterEstimation,”NASA-TM-88281,1987.
R.C.NelsonFlightStabilityandAutomaticControlMcGrawHill,Boston,MA,1998.
17of17
本文发布于:2023-11-24 10:57:19,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1700794640224984.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:Flight Testing A Micro Air Vehicle Using Morphing F.doc
本文 PDF 下载地址:Flight Testing A Micro Air Vehicle Using Morphing F.pdf
留言与评论(共有 0 条评论) |