Flight Testing A Micro Air Vehicle Using Morphing F

更新时间:2023-11-24 10:57:20 阅读: 评论:0

果蔬瘦-河北消防户籍化管理系统

Flight Testing A Micro Air Vehicle Using Morphing F
2023年11月24日发(作者:医疗垃圾分类)

FlightTestingAMicroAirVehicle

UsingMorphingForAerorvoelasticControl

MujahidAbdulrahim,HelenGarcia,GregoryF.Ivey,andRickLind

Microairvehiclesareabletoflyinenvironmentswithlittlemaneuveringroom;however,suchflightre-

quireshighagilityandprecisionmaneuvering.Acurrentclassofmicroairvehicleisconstructedwithonly

rudderandelevatorforcontrolauthority.Suchsurfacesarenotoptimalforflightcontrolbutaileronscan

notbeinstalledonthemembraneudforwingsonthevehicles.Morphingisudasanaerorvoelastic

effectorforcontrol.Vehiclesareconstructedusingthreadstocommandacurlofthewingsandusingtorque

rodstocommandatwistofthewings.Ineachca,flighttestsdemonstratetheactuationcaussufficient

deformationofthewingtoresultinsignificantcontrolauthority.Theflightdynamicsshowturnsandspins

canberepeatedlyperformedusingthisaerorvoelasticcontrol.

I.Introduction

Microairvehicles(MAV)arerapidlygainingattentionintheflighttestcommunity.Thesmallsizeandlightweight

ofthevehiclesmakethemespeciallyattractiveforsomemissions.Thevehiclesarequiteportablesomaybeeasily

transportedtoremotelocations.AMAVisinherentlystealthybecauofitssizeandquietbecauofitselectric

propulsion.Furthermore,manytypesofnsorsarebeingminiaturizedandwouldfitwithinthepayloadcapabilities

ofaMAV.

Someareasofoperation,suchasurbanenvironments,requireavehiclethatissmallbutalsoextremelyagile.

Agilityisobviouslyneededsothevehiclecanmaneuverwithinsmallareasandbetweenobstaclesinadenenviron-

ment.Thevehiclemustalsobehighlyresponsivetorejectdisturbanceslikewindgustswhichmaybeconsiderable

nearbuildings.

Theconceptofaerorvoelastictailoringthroughmorphingisbeingstudiedforcontrolonmanyvehicles.The

basicconceptofthisapproachinvolvesactivelychangingtheshapeofavehicletoaffecttheaerodynamicsand,con-

quently,theflightdynamics.Suchcontrolinherentlyusthecontrolandactuationthroughthestructuraldynamics

toaffecttheaerodynamicsasanaerorvoelasticsystem.Theresultingsystemhasdifficultdynamicssodesignand

analysisofaerorvoelasticcontrolisachallenge.

1

Controlthroughaerorvoelasticity,whilenotcommon,iscertainlynotanewconcept.Themostfamousexample

5

isarguablythewingtwistingudbytheWrightbrotherstooperatetheirflier.Academicstudieshavemainlyfocud

onfluttercontrolbutveralexamplesofmaneuveringdesignhaveincludedtheuofdynamicinversionandrobust-

2

nesstoaccountfortheaerorvoelasticdynamics.Inpractice,thedesignisoftenlimitedtosimplyformulatingnotch

3

filterstoavoidinstabilitiesbutretainlow-frequencyperformance.TheActiveAeroelasticWingprojecthasprobably

4

beenthefirstaircrafttodirectlyrequiredesignofanaerorvoelasticcontroller.

15

Morphinghasmorerecentlybeenconsideredaviablemethodofcontrol.Theapproachtochangetheshapeofa

6

vehiclewillclearlyaffecttheflightdynamicsandstaticpropertiessuchasliftanddrag.Issuesremaintobestudied

AmericanInstituteofAeronauticsandAstronautics

astotheuofmorphingfordynamiccontrol.Forinstance,studiesneedtobeperformedascertainingifavehiclebe

morphedwithsufficientmagnitudeandbandwidthtocontroltheshortperiodmotion.Inthisca,theuofmorphing

asaerorvoelasticcontrolforagilityistheissue.

Thispaperconsiderstheuofmorphingasanaerorvoelasticeffectorforcontrolofamicroairvehicle.Several

typesofmorphingareactuallyconsideredonveraltypesofvehicles.Avehiclewith12inwingspanhasthreadsthat

curlthewings.Anothervehiclewith24inwingspanhastorquerodsthattwistthewings.Ineachca,themorphing

isshowntogeneratesignificantcontrolauthorityformaneuvering.Propertiesofturnsandspinsarehighlightedto

demonstratetheeffectofthisaerorvoelasticcontrol.

II.Morphing

Theconceptofmorphingisafairlybroad-rangingidea.Amorphingaircraftisgenerallyacceptedtobeanaircraft

whoshapechangesduringflighttooptimizeperformance.Suchchangesmightincludespan,chord,camber,area,

6

thickness,aspectratio,planformandanyothermetricrelatedtoshape.Themorphingcanevenbeappliedtoacontrol

surfacetoeliminatehinges.

29

Thecontinuingmaturationofmaterialsandcontrolstechnologyisleadingtoconsiderationofmoreextremetypes

ofmorphingforcontrol.Aircraftcanbemorphedinveralbiologically-inspiredwaysthatareappropriateforcontrol.

Forinstance,birdshaveverycomplexwingshapesduringflightwithlargevariationsinsweepandtwistalongthe

entirespan.Furthermore,thespanitlfchangesbadonflightconditionformanybirds.Thecomplicatedmorphing

isactuatedusingjoints,suchaselbowandwrist,alongwiththefeatherstoachievemanywingshapes.

ProgramsbyDARPAandNASAhavebeenextensivelystudyingtheconceptofmorphing.Thestudieshave

showntheaerodynamicbenefits;however,theuofmorphingforcontroldesignhasnotbeenstudiedextensively.

Thelimitedrearchintocontrolhasactuallyconsideredstaticissues.Anaircraftwithmorphinghasbeenshown

tohavegoodperformancewhenfixedatdifferentconfigurations.Controlwasconsideredformorphinginarelated

21

studybutonlyconsideredtheamountofactuationenergyneededtocaumorphing.Theamountofcontrolauthority

26

wasalsostudiedforsmartmaterialsembeddedinastructureinthecontextofsteady-stateopen-loopcontrolledflight.

23

Theissueofcontroldesignformorphingsystemshaspartlybeenoverlookedbecauofthelackofexperimental

testbeds.Manymechanismsformorphinghavebeenconstructedbuttheyarenotyetimplementedonaflightvehicle.

NASAhasconstructedawingwithmorphingcamber.Atofsmartsparshasbeenbuiltthatprovidemanytypes

24

ofmorphing.Mechanismshavealsobeenbuiltsuchasatelescopingspartomorphaspectratioandaninflatable

1920

actuatortochangesweep.Ineachca,themechanismsaretooheavyforaflightsystemsoonlywindtunneltesting

28

ofastaticmounthasbeenperformed.Aninflatableconcepthasactuallybeentakentoflightbutthemorphingisa

22

singleone-timeinflationsoisnotudformaneuveringcontrol.

AprojectparticularlyrelevanttothestudyofmorphingforcontrolistheF/A-18ActiveAeroelasticWing(AAW).

15

TheAAWisusingwingtwisttoaltertheaerorvoelasticdynamicsandgeneraterollmoments.Themorphingisac-

tuallyapassiveeffectresultingfrommovingleading-edgesurfacesoftheflexiblewing.Thattestbedudasimple

mechanismtogeneratemorphinginordertostudytheresultingloadsandcontrolissues.

AMAVisanespeciallyappropriateplatformforconsiderationofmorphing.Theflexibilityofthemembrane

enablestheshapeofthewingstobeeasilychanged.Theresultingchangewillobviouslyaffectthedynamicsand

actasaneffectortoprovidecontrolauthority.Assuch,themorphingofaMAVaddsverylittlecostbutprovides

tremendousbenefit.Thispaperwillconsidersimplestrategiestoprovidemorphingtoemphasizecontrolissues.

Esntially,themethodsofmorphingarenotconsideredasmuchasthedynamicsofmorphing.

III.VehicleDesign

Small,remotelypilotedvehiclesareadaptedformorphingthroughsimplemodificationofthestructure.The

vehiclesarebetween10inand24ininwingspananduavarietyofstructuralmemberstobothwithstandflight

loadsandaccomplishmorphingdeformation.Vehiclesofthissizeareespeciallywellsuitedastestbedsforsimple

morphingstrategiesbecauofthehighstrengthoftheactuatorscomparedtoflightloads.LightweightMAVairframes

2of17

aresubjectedtorelativelysmallairloadsduringflightandmaneuvering.Thesmallaerodynamicloadspermitflexible

materialstobeudthroughoutthestructure.Suchflexiblestructuresareeasilydeformedusingexistingactuators.In

turn,simplemorphingstrategiesforsmallairvehiclesarereadilydevelopedandflighttested.

A.WingCurlingAircraft

Morphingcontrolwasfirstimplementedona10inwingspanmicroairvehicle.Thisvehicleudelevatorand

ruddersurfacesforcontrol,bothofwhichweremountedonaconventionalempennage.Afolding,flexiblewingwas

attachedtothefulageofeachaircraft.Thewingwasmountedoncabanestrutsforthe10inwingspanvehicle,

andonmid-fulagerodsonthelarger12invehicle.Thedifferentwingpositionallowedeachvehicletoundergoa

slightlydifferenttypeofmorphingdeformation.Thetwovehicles,showninFigure1,areesntiallysimilar,apart

fromthewingpositionandtheinclusionofruddercontrolonthe10invehicle.Otherwi,bothvehiclesaccomplish

morphingbycurlingthecompositewingsandchangingtheangleofincidenceononewingatatime.Turncontrol

isaccomplishedbymorphingasinglewingtoincreatheaerodynamicforcesandgeneratearollmomentinthe

directionoppositetothemorphedwing.Forinstance.curlingtheleftwingresultsinapositive(right-handed)rollrate

andanensuingrightturn.

Figure1.WingcurlingmorphingMAVs-10inwingspanhigh-wingaircraft(left)and12inspanmid-wingaircraft(right)

Thefolding,flexiblewingusastripofcarbonfiberweaveastheprimarystructuralmember.Thestripextends

approximately1inbackfromtheleadingedgeofthewing,reachingthepointofmaximumcamber.Thinstripsof

unidirectionalcarbonfiberareembeddedwithintheleadingedgestripandextendtothetrailingedge.Theentire

structureiscuredagainstafemalemoldtoformtheairfoilshape.Finally,anextensiblelatexmembraneisadheredto

theleadingedgeandbattens.Theresultisathin,undercamberedwingsurfacehavingbothflexibilityinthebattens

andcurlingcapabilityintheleadingedgestrip.Thecurvedleadingedgectionisabletoresistconsiderablebending

loadsinthepositivedirection.Undernegativeloading,however,thestructurereadilybucklesanddeformsinboth

curlingandtwisting.

ThistypeofwingstructureisnormallyudforcollapsingthewingofaMAVtofitintoasmallcontainer.It

isalsowellsuitedformorphing,giventhecomplianceofthestructure.Themorphingiscontrolledbyusingsmall

rotaryactuatorsconnectedtohardpointsonthewingstructurebytensionedKevlarcables(Figure2).Astheactuator

adjuststhetensiononthecable,thewingdeformsintoatwistedformthatisappropriateforflightcontrol.Namely,the

resultingshapeincreastheangleofincidenceofthemorphedwingandincreastheliftingforceproduced.When

onewingsideismorphed,aliftdifferentialiscreated,causingtheaircrafttoincurarollrate.

TheextentandshapeofthemorphingcanbeadjustedbyvaryingtheamountoftensionintheKevlarlinesor

adjustingthelocationofthehardpointonthewing.Theshapeisalsodependentonthedirectionofthetensileforce

fromtheKevlar,whichisdeterminedbythepositionoftheactuatorarmwithrespecttothewinghardpoint.Alarge

verticalparationbetweenthetwopoints,asonthe10inaircraft,producesalargelytwistingmotion.However,

asthetensileforceisappliedinamorespanwidirection,asonthelowerwing12inaircraft,thewingexhibitsa

predominantlycurledmotionduringactuation(Figure3).

3of17

Figure2.Undersideviewoffolding,flexiblewingwithtensionedKevlarcables

Figure3.Rearviewof12”MAVshowingundeflected(left)andmorphedwing(right)

Withouttwisting(andstrictlycurling),thewingmorphingdoesnotaffecttherolltrimtosufficientlycontrolthe

aircraft.The12inairplanerequiresanadditionalKevlarstrandconnectedtoahardpointonthetrailingedgetoproduce

asufficientamountofwingtwisting.Esntially,asingleactuatoroutputarmisudtotensiontwocablesconnected

totwopointsonthewing.Theresultingmorphingproducesashapedeformationthatissuitableforlateral-directional

control.Theshapeandthicknessofthecarbonfiberleadingedgestriphasaconsiderableeffectonthemorphing

shape.Thewingsaresomewhatnsitivetodesignorfabricationchanges,whereadisparityinthestructurecancau

adrasticallydifferentmorphingshape.

B.WingTwistingAircraft

Theconceptoftakinganexistingdesignandretrofittingamorphingmechanismwasextendedtoa24invehicleof

similargeometry(Figure4).Aswiththesmalleraircraft,thevehiclewasbadonconventionalconfigurationandud

anelevatorandrudderforcontrol.Theprimarydifferencebetweenthetwoaircraftisthewingstructure,whichus

anominallyrigidunidirectionalcarbonfiberleadingedgeinsteadofthemorecompliantcarbonweave.Additionally,

thewingsurfaceisalessextensiblenylonfilm.Boththewingsurfaceandleadingedgestructurereducethemagnitude

ofthedeformationthatresultsfromflightloads.However,thewingretainedtheflexibilityinthebattens,whichallows

forwingwarpingviaanaluminumtorque-rod.

4of17

PropertyWingTwistingMAVWingCurlingMAV

AmericanInstituteofAeronauticsandAstronautics

Theprimarydifferenceinconceptbetweenthe24inwingwarpingandthe12inwingcurlingisthebidirectional,

positivecontroloftheshapedeformation.Thetorque-rodsareabletoactuatethewingintwistinbothtrailing-edge

upandtrailing-edgedowndirections.Suchcontrolisnotpossibleusingthetensionedcables,asthemechanism

reliesonthewingstructuretoprogressivelybuckleandcurl.Shouldthewingleadingedgedeformtoosoonortoo

far,thecablewoulddevelopslackanddeterioratecontrolofthewingshape.Sincethewingwarpingaircraftusa

stifferleadingedgematerial,theproblemofprematurebucklingorexcessivedeformationunderaerodynamicloadis

largelyeliminated.Thus,thecontrolofthewingshapeislargelyafunctionoftheactuatorposition,althoughthewing

remainesfreetodeformslightlyinrespontoairloads.

IV.FlightTestingandHandlingQualities

A.TurnsandBasicControllability

1.WingCurling

Thecontrollabilityofthewingcurlingaircraftisimprovedoverarudder-elevatorequippedaircraft.Thewingmor-

phingfacilitatesflightpathtrackingoverthemajorityoftheflightenvelope.Atcruiairspeed,themorphingcontrol

issufficientforsmall,stabilizingadjustmentsabouttriminadditiontolargecommands.Althoughsomeroll-yaw

couplingresultsfromthemorphingdeflection,theresponremainsgreatlyimprovedoverruddercontrolforturns.

Thewingcurlingmorphingexhibitsgoodcontrolresponneartheneutral,trimposition.Smallinputsareneces-

saryinperformingturnsandinmakingslightadjustmentstotheflightpath.Underthecircumstances,themorphing

providesanadequatelevelofcontrol.Althoughthephysicaldeformationofthewingsurfaceisnotnecessarilylin-

ear,theaircraftrespondspredictablytovariousmagnitudesofcontrolinput.Inparticular,themorphingissuitable

forbothcommandingturnsandforcorrectingforattitudeperturbationsfromwindgustsorotherdisturbances.Roll

controllabilityremainssatisfactorythroughouttheairspeedrangeencounteredduringcrui,high-speeddives,and

landing/approachphas.

However,rollhandlingqualitiestendstobequitensitivetothelocationofthehardpointonthewingandtothe

tensioninthecable.Slightasymmetriesintherightandleftsidecabletensionsoftencontributestodifficultiesin

controlandnon-zerotrimcondition.Overariesofflights,thecontrolresponchangedslightlyfromvariationsin

thecontrollinkages.Additionally,deteriorationofthelatexmembranenoticeablyreducedthewingsurfacetension.

Thenaturalrubberudinthelatexmaterialdecayedwhenexpodtothesun.Asaresult,thereducedtension

preventedthedeformationfrompropagatingsmoothlythroughoutthewingstructure.Inturn,thetwistdeformation

caudbythebucklingremainedlocalizedaroundthehardpointandreducedcontroleffectiveness.

2.WingTwisting

Turnperformanceisconsiderablyimprovedwiththewingtwistmorphingonthe24inaircraft.Thetorque-rodmech-

anismfacilitatesbasictaskssuchascommandingabankangleandcorrectingforattitudeperturbations.Theaircraft

respontosmallcommandinputsismoreimmediateandconsistentthanthewingcurlingaircraft.Thisimprovement

occurredinpartduetotheimprovedcontrolpoweroftheactuatoroverthemorphingdeflection.Additionally,the

wingtwistgeneratesananti-symmetriccommandthatmorphsthewinginbothpositiveandnegativedirectiononboth

wingssimultaneously.

Inadditiontosubstantiallyimprovingcontrolpower,theanti-symmetricmorphingreducesyawcouplingcompared

tothewingcurlingmorphing.Minimalruddercorrectionsarerequiredtomaintainturncoordinationduringmaneu-

vering.Theimprovedmorphingmechanismofthe24inaircraftcontributedtovastlyimprovedhandlingqualities.

Inparticular,theaircraftperformanceingustywindconditionsbenefitsfromthepositivecontroloverthemorphing.

Highfrequencycontroltaskssuchasattitudecorrectionandstabilizingcontrolareeasilyperformed.

6of17

B.360Rolls

Continuous360

rollmaneuversareperformedforeachaircrafttodeterminethemaximumrollrateachievablewith

morphing.Thetestshelpdeterminetheresponoftheaircrafttoalongmorphingcommand.Theyarealsouful

inidentifyinganyobviouscross-couplinginpitchandyawthatoccurduringthemaneuver.Rolltestsareperformed

withtheaircraftattrimmed,straightandlevelflightatcruiairspeed.Fullmorphingiscommandedtoeitherrightor

leftdirectionsandhelduntiltheaircrafthascompleteda360

rotationalongtherollaxis.

1.WingCurling

Thewingcurlingmorphingprovidesasufficientlevelofcontroltoeffectacompleteroll.Despitetheasymmetry,

theaircraftexperiencesarelativelysmalldivergenceinflightpathduringthemaneuver.Undermaximummorphing

deflection,astabilizedrollrateisachievedwithin0.5conds.Maximumrollrateisapproximately,achievable

inbothleftandrightrolldirections.

Duringtherollmaneuver,theaircraftprescribesanalmosthelicalflightpath.Aslightgaininaltitudeisincurred

halfwaythroughthemaneuver,followedbyadescendingreturntolevelflight.Atthecompletionoftheroll,the

aircraftistypicallypitcheddownslightlyandmayhaveasmallheadingchange.

2.WingTwisting

Theaircraftisabletoachieveahighlevelofrollperformanceusingwingtwistmorphing.Theperformanceis

improvedcomparedtowingcurling,rudder,orevenconventionalailerons.Atthemaximummorphingdeflectionof

approximately10twist,theaircraftachievesastabilizedrollrateofwithin0.25conds.Atnearly3rolls

percond,aircraftexperiencesverylittleflightpathdivergenceorcross-coupling.Duringthemaneuver,theaircraft

wingsbecomevisiblyblurredfromtherotation,whilethefulageappearstorotateaboutthecenterlineaxis.Similar

MAVsusingrigidwingsandhingedconventionalaileronswereabletoachieveamaximummeasuredrollrateof

.

Recoveryfromtherollmaneuverisalsowithin0.25condsofneutralizingmorphingcommand.Rollperformance

changesslightlyovertheairspeedrange,withhigherairspeedsexhibitinghigherrollrates.However,thecontrol

remainspositiveandsufficientfromnear-stallspeeduptothemaximumdivespeed.

C.Spins

Controlofamorphingvehiclebeyondthestallboundariesisanotherrelevantfacetoftheflightdynamics.Agreater

degreeofcontroloverthevehiclegeometrymayimprovestall/spinavoidanceor,converly,evencommandade-

velopedspinmaneuver.Thelargedegreeofcontrolaffordedbythemorphingmechanismcouldbebeneficialin

generatinganti-spinforcesandrecoveringfromastabilizedspin.

Thespincharacteristicsofthevehiclesareinvestigatedbymanually-pilotedmaneuvers.Spinmodesareiden-

tifiedusingclassicalspinentrytechniques.Theindividualmodesareproducedbytrial-and-errorandhavebeen

18

reproducedoververalflighttests.Thefollowingdiscussionprentssomeofthepredominantspintypesencoun-

teredduringtheflighttests.Notethespinsallumorphingbecauthespincharacteristicswerenotnearlyas

significantusingonlyrudderandelevator.

1.WingCurling

Spinmodesofthe10inand12invehicleswereinitiallyencounteredduringflighttestsofaggressivemaneuvers.

Largemorphingcommandscoupledwithpositiveelevatorcommandsresultedinsuddenandviolentrollsoppositeto

thecommandeddirection.Thisbehaviorwasmostoftenobrvedatlowerairspeeds,leadingtotheidentificationofa

considerabledeficiencyinthewingcurlingmethod.

Thewingcurlingmorphingisabletocontrolrollrateprimarilybyincreasingtheangleofattackofthemorphed

wing.Thedeformationalsoencompassspanwicurling,althoughtheeffectoftwistingtoincreatheincidence

7of17

appearstobethepredominantfactorcontrollingrollmoment.Undertypicalflyingconditionsandmoderatemorphing

deflections,themorphingisabletogenerateaproverliftdifferential(i.e.inthecommandeddirection)andeffecta

rollratechange.Thisisthesamecharacteristicdescribedintheturnandrollperformancections.

However,asthemorphingcommandbecomeslarge(causingalargechangeinincidenceangle)andiscoupled

withpositiveelevatordeflection,theangleofattackofthemorphedwingcanexceedthestallangle,causingavere

lossofliftinthedeformedregion.Theresultingliftdifferentialbetweenthetwowingsbecomesadvertothe

commandeddirection,leadingtoanopposite-directionroll.Whilethisisoccasionallyrecoverable,suchanasymmetric

stalltypicallydivergesintoaspin.Theoverwhelmingmajorityoftheencounteredspinswereterminal,resultingin

theaircraftimpactingthegroundinastabilizedspin.

Recoveryfromastall-spinisquitedifficultforanumberofreasons.Therearcherssuspectthatthestallresulting

fromexcessivemorphingpositioncausacollapofthelow-pressureregionabovethewing.Thiscollapreduces

thetensiononthecontrolcableandpreventsthewingfromproperlyextendingandreturningtotrimflightcondition.

Additionally,themorphingmechanismpermitsthepilottostrictlyincreatheangleofattackofthewings.Thus,

inopposingtherollrateincurredduringaspin,thepilotmustincreatheangleofattackoftheopposite(unstalled)

wing,whichmayfurtherdecaythecontrollabilityoftheaircraft.

Somespinstestsresultedinasuccessfulrecoverytolevelflight.Thespinsweretypicallyinitiatedusingagentler

stallentryandsmallermagnitudesofelevatorandmorphingcommandinputs.Flightpathduringthespinsrembled

adescendinghelicalspiral.Recoveryprocedureentailedneutralizingcontrolsurfaceandmorphingdeflectionand

allowingtheMAVtolf-recoverfromthespin.Oncestabilized,elevatorcommandwasudtopullupfroma

verticaldivetolevelflight.However,becauofthedifficultiesinconsistentlyrecoveringfromadeparture,spins

werenotconsideredasufulmaneuversforthistypeofMAV.

2.WingTwisting

Figure6showsthecommandandrotationratesduringaconventionalspin.Thismaneuverisinitiatedfromlevelflight

bycommandingpositiveelevatortoincreathepitchrateandangleofattack.Rightruddercommandisthenapplied

togenerateayawingmomentastheaircraftapproachesstall.Inthisca,theyawcausanasymmetricstalland

startsthespinrotation.Theaircraftresponisrelativelyconstantthroughoutthemaneuver,althoughtherollrate

tendstobuildupastheflightpathchangesfromleveltoavertical.Theautorotationcontinuesaslongasthepositive

elevatorandruddercommandsareheld.Oncethecommandsareneutralized,therotationslowsandcomestoastop

withlittleornooppositerudderinput.Positiveelevatorisudtorecovertheaircrafttolevelflightat363conds.

Althoughthistypeofspinhasbeenexperiencedveraltimes,theentryprocedurestendtobedifficulttoreproduce.

Specifically,applyingruddercommandatalowangleofattack(tooearly)preventsastallfromdevelopingandresults

inahigh-speedspiraldive.BothwindtunnelandCFDanalysishaveshownthatthethin-undercamberedairfoilsud

onthevehiclehavedelayedstallrespon.Thisaffordssuchvehiclesincreadresistancetostall-spindeparture,at

leastforpositiveloadings.

Theeffectofmorphingonpositive(upright)spinsistoacceleratetheontofthespinandtoassistintherecovery

process.Thiseffectismostpronouncedduringcross-coupledcontrols,wheretherudderdirectionisoppositetothat

ofthemorphing.Insuchaca,thehighangleofattackattheinsidewingtipisfurtherincreadbythemorphing

actuation,leadingtoanobrvedstall-spin.Releasingthemorphingcommandeffectivelyreducesthewingangleof

attackandproducesnearlyimmediaterecoveryfromanupright,conventionalspin.

Conventionalspinsarealsoperformedwithnegative(down)elevatoractuationtoproduceastarklydifferentre-

spon.Inparticular,thespinmodesobrvedareofconsiderablyhigherenergy.Therotationratesofanegative

spincomparedwithanuprightspintendtobebetween2to6timesgreater.Badonrudimentaryanalysis,thestall

characteristicsofathinunder-camberedwingatnegativeanglesofattackarefarmoreverethanthecharacteristics

athighanglesofattack.Inflight,theairplaneisobrvedtohaveaveryimmediateandviolentrespontolarge

negativeelevatorcommands.Suchaninputisbelievedtocauanegativestallquickly,whereanyasymmetryabout

theyawaxisproducesalargerateofrotation.

Figure7showsanidentifiednegativespinmodeinitiatedbyamorphingcommandwithelevatorandrudder.At

401conds,theaircraftrespondstotheconstantcontroldeflectionbybuildinguprotationratesonallthreeaxis.The

8of17

40

30

50

10

0

R

e

s

p

o

n

s

e

(

d

e

g

/

s

)

C

o

m

m

a

n

d

(

d

e

g

)

20

0

−10

−20

−30

−40

359360361362364363

elevator

rudder

morphing

−50

roll rate

pitch rate

yaw rate

360361359362363364

−100

Time (s)

Time (s)

Figure6.PilotCommands(left)andRespons(right)duringconventionalspin

entryintothemaneuverisrelativelygradualandonlyafteronecondofcontrolinputshavethepitch,roll,andyaw

ratesbecomesignificant.

Thisparticulartypeofspintendstostabilizeindependentlyoftheinitialpro-spincontroldeflections.Att=402

conds,thecontrolsarerelead,whiletheaircraftcontinuestospin.Theapplicationofpositiveelevator(forrecov-

ery)shortlyafterwardsappearstomaintainthespinforsometime.Itisonlywithcorrectiveoppositeruddercommand

thattheaircraftarreststherotationandrecoversfromthespin.

Itisdifficulttodrawsolidconclusionsfromthisspinquence.However,therearchersattributethetwodistinct

modesobrvedtobeacaofprimaryandcondaryspincharacteristics,wherethelatteriscaudbyapremature

recoveryattempt.Similarspinshavebeenobrvedfrominbothleftandrightdirections.

40

30

elevator

rudder

morphing

50

10

0

R

e

s

p

o

n

s

e

(

d

e

g

/

s

)

C

o

m

m

a

n

d

(

d

e

g

)

20

0

−10

−20

−30

−40

400401402403404405

−50

roll rate

pitch rate

yaw rate

401402400403404405

−100

Time (s)

Time (s)

Figure7.PilotCommands(left)andRespons(right)duringspin

Alternatively,Figure8showsaconsiderablydifferentspinbehavior.Althoughinitiatedbycommandssimilarto

thepreviousspins,thistypeofspinexhibitsacyclicorperiodicmotion.Itisperhapswiththetimingofthecontrol

inputsthatadifferencecanbefound.WhereasinFigure9,theelevatorinputlaggedbehindtherudderandmorphing

inputs,thespindepictedbyFigure8showstheelevatorleadingslightly.Theprecieffectthishasontheairflowis

unknown.However,theresultingaircraftresponisshowntobe6timesgreaterinmagnitudethanaconventional

spin.

Fromlevel,trimmedflight,theaircraftissubjectedtofullleftwingmorphing,fullleftrudder,andfullnegative

elevatorcommand.Theinitialreactionoftheaircraftistopitchdownataconstantrateandincuraleftrolland

9of17

yawfromthewingmorphingandrudderdeflections.Oncethewinghasreachedthenegativestallangle,presumably

facilitatedbythedeflectedwing,arapidspinensues,nearlydoublingtherollandyawratesandreducingpitchrate.

Thispatternisrepeatedfourtimesthroughoutthespin,allwhilepilotcommandsareheldconstant.Eachcycleis

proceededbyaperiodoflowmomentum,followedbyasharpchangeinpitchratealongwithpeaksinboththeroll

andyawrates.

Whilethedynamicsofsuchamaneuverarenotverywellunderstood,itappearsthatthemorphingofthewing

playsalargerollinbothinducingandrecoveringfromthespin.Forinstance,similarspinentriesperformedwithout

morphingarecharacterizedbyconsiderablylowerrotationratesandacontinuationofthespinaftercommandinputs

areneutralized.However,therecoveryofthiscyclicspinmodeoccursnearlyimmediatelyafterthecontrolsare

neutralized.Asenatt=176inFigure8,theaircraftisattheperiodofhighestmomentduringreturntoneutral

command.Therotationratescontinuetofollowthecharacteristicspikepatternandfinallyconvergestozerorotation

rates.

40

30

elevator

rudder

morphing

50

roll rate

pitch rate

yaw rate

10

0

R

e

s

p

o

n

s

e

(

d

e

g

/

s

)

C

o

m

m

a

n

d

(

d

e

g

)

20

0

−10

−20

−30

−40

171172173174175176177

−50

−100

171172173174175176177

Time (s)

Time (s)

Figure8.PilotCommands(left)andRespons(right)duringcyclicspin

Inflight,thishastheeffectofstoppingtheaircraftinmid-rotation.Unliketheotherspinmodesobrved,the

cyclicspinmodehasnoapparentrecoveryapartfromneutralizingthecontrols.Theaircraftwillcontinuetotheendof

agivencycle,cearotation,andsimplyflyaway.Theno-downrecoverytypicalofotherspinmodesiscontrasted

withanimmediaterecoverytolevelflight.

TheufulnessofthecyclicspinmodedepictedinFig.8isperhapsquestionable,althoughitmaygiveritoa

differentmodeofmaneuveringformorphingaircraft.Forinstance,theabovemaneuvermaybeufulforacontrolled

verticaldisplacement.Oninitiatingtheentry,theairspeedquicklydecaysandstartstheaircraftonarelativelyslow

verticalflightpath.Duringthisportionofthemaneuver,theaircraftincursariesofhighrateofrotations,each

paratedbyaperiodoflowmomentum.Asevidencedbytherecoveryfromthemaneuver,thisperiodcanbeud

torecovertheaircraftintostableflight.Whilepreviousspinmodesrequiredcorrectiverudderandsignificantaltitude

lossforrecovery,thiscyclicspinmodestoppedoncethecontrolswereneutralized.

Attitudeandairspeedentryconditionsintothespintrialshavebeenobrvedtohavesomeimpactonthestabilized

spinmodes;however,accuratemeasurementsoftheentryconditionswerenotpossible.Thelackofpressurensors

ontheairframeprecludedthegatheringofsuchdata.Excitationofaparticularspinmodedependedonthepilotability

topositiontheaircraftproperlybadoncontrolfeelandvehicleobrvations.

Thespinentrymaneuverswerealsoattemptedforothercontrolcombinations.Specifically,cyclicspinswere

attemptedwithoutwingtwistingbyusingnegativeelevatorandrudderdeflection.Thetrialsresultedinastabilized

spinbutwithconsiderablylowerrotationratesthanthecyclicspin.Additionally,thismodedidnotexhibittheperiodic

behaviorachievedthroughwingtwistingduringaspin.

10of17

V.Modeling

A.WingCurling

Flightdatafromthevehicleisanalyzedtoestimatemodelsoftheflightdynamics.Severaltechniqueswereattempted

toestimatethemodels,includingsystemidentificationandparameterestimation,butwithlimitedsuccess.This

2732

vehicleisparticularlydifficulttomodelbecauthemorphingcaustime-varyingasymmetrieswhichviolatemany

assumptionsudbystandardroutines.

Furthermore,theestimationisdifficultbecauoflimitedflightdata.TheMAVisequippedwithonlygyrosand

accelerometersbuttheflightdatafromtheaccelerometersisactuallytoonoisytobeufulformodeling.Thus,veral

criticalmeasurements,suchasangleofattackandangleofsideslip,arenotavailable.Somedynamicsarenoteasily

obrvable,especiallyintheprenceofnoi,usingonlytheavailablensors.

Anonlinearauto-regressivemodelisudtoreprenttheflightdynamics.Thegeneralformofthismodelis

showninEquation1.Thismodelrelatesthegyromeasuresofrollrate,

,pitchrate,,androllrate,,tothe

morphingcommand,

,andelevatorcommand,,atthesamplinginstanceof.Thematrices,

and

,reprentthedynamics.

(1)

ThemodelinEquation1containsquadratictermsoftheratesandcommands.Suchquadratictermsareincluded

toaccountforunknownrelationshipsbetweenthewingshapeandtheaerodynamics.Inthisca,thetermsutilizean

absolutevaluetoallowthecontributionsfromthequadraticstochangeinsign.

ThemodelinEquation1alsocontainscouplingterms.Thetermsmultiplythegyromeasurementsbyeach

other.Thestandardequationsofmotionforarigid-bodyaircraftincludecouplingtermswhichscalebythemoments

ofinertia.ThisMAVisobviouslyasymmetricduringthemorphingsothecouplingareesntial.

33

Finally,Equation1computestheupdatetothegyromeasurementsasafunctionofthemeasurementsfromtwo

previoussamplingtimes.Thetermsareincludedtoaccountforthetime-varyingnatureofthedynamicswhichari

byalteringthewingshape.Thedynamicsareassumedtobesufficientlydescribedbytwosamplingtimesalthougha

rigorousstudyofthesamplingtimeswasnotconducted.

Thevaluesofthematrices,

and,inEquation1aredeterminedbyaleast-squaresfittotheflightdata.The

resultingmodelisudtosimulatetheresponstothemorphingandelevatorcommands.Suchresponsareshown

inFigure9.

TheresponsinFigure9demonstratethemodelcapturesthebasictrendofthedynamicsbutisnotcompletely

accurate.Thepredictedresponsarenotperfectmatchestothemeasuredresponsbutyettheyclearlyshowsimi-

larities.Thus,themodelindicatesthetime-varyingasymmetriesassociatedwiththemorphingcausnonlinearities

andcouplingintheflightdynamicsofthisMAV.

11of17

155

10

datadata

simsim

8

6

data

sim

50

0

−5−5

−10

−15−10

01234560123456

P

i

t

c

h

R

a

t

e

(

d

e

g

/

s

)

R

o

l

l

R

a

t

e

(

d

e

g

/

s

)

Y

a

w

R

a

t

e

(

d

e

g

/

s

)

4

2

0

−2

−4

−6

Time (s)Time (s)

−8

0123456

Time (s)

Figure9.MeasuredandPredictedResponsforRollRate(left),PitchRate(middle)andYawRate(right)

B.WingTwisting

Flighttestingoftheactivewing-shaping24inMAVisperformedintheopenareaofaradiocontrolled(R/C)model

fieldduringwhichwindconditionsrangefromcalmto7knotsthroughouttheflights.Oncetheflightcontroland

instrumentationsystemsarepoweredandinitialized,theMAVishand-launchedintothewind.Thislaunchisan

effectivemethodtoquicklyandreliablyallowtheMAVtoreachflyingspeedandbeginaclimbtoaltitude.

ThisairplaneiscontrolledbyapilotonthegroundwhomaneuverstheairplanevisuallybyoperatinganR/C

transmitter.Thedataacquisitionsystembeginsrecordingassoonasthemotorispowered.

Thisaircraftdesignallowseitherrudderorwingshapingtobeudastheprimarylateralcontrolforstandard

maneuvering.Theairplaneiscontrolledinthismannerthroughturns,climbs,andlevelflightuntilasuitablealtitude

isreached.Ataltitude,theairplaneistrimmedforstraightandlevelflight.Thistrimestablishesaneutralreference

pointforallthecontrolsurfacesandfacilitatesperformingflighttestmaneuvers.

Open-loopdataistakentoindicatetheflightcharacteristicsoftheMAV.Specifically,theratesandaccelerations

aremeasuredinrespontodoubletscommandedparatelytothervos.Severaltsofdoubletsarecommanded

ranginginmagnitudeanddurationtoobtainarichtofflightdata.

ThedynamicsoftheMAVinrespontoruddercommandsisinvestigatedtoindicatetheperformanceofthe

traditionalconfigurationforthisMAV.Areprentativedoubletcommandandtheresultingaircraftresponsare

showninFigure10.

15

10

150

100

50

0

−50

−100

−150

150

100

Y

a

w

R

a

t

e

(

d

e

g

/

s

e

c

)

123450

R

o

l

l

R

a

t

e

(

d

e

g

/

s

e

c

)

R

u

d

d

e

r

C

o

m

m

a

n

d

5

0

−5

−10

−15

0123456

50

0

−50

−100

−150

−200

012345

Time(c)

−200

Time(c)

Time(c)

Figure10.DoubletCommandtoRudder(left),RollRaterespon(middle),andYawRaterespon(right)

TherollrateandyawratemeasuredinrespontothiscommandareshowninFigure10.Therollrateissufficiently

largeandindicatestherudderisabletoprovidelateral-directionalauthority;however,theyawrateisclearlylarger

thandesired.Actually,theyawrateissimilarinmagnitudetotherollratesothelateral-directionaldynamicsarevery

tightlycoupled.Theeffectoftherudderinexcitingthedutchrolldynamicsisclearlyevidencedinthisrespon.

12of17

Doublets,suchasthepulquenceshowninFigure11,arealsocommandedtothemorphingrvo.

8

6

150150

100100

5050

00

−50−50

−100−100

−150−150

M

o

r

p

h

i

n

g

C

o

m

m

a

n

d

4

2

0

−2

−4

−6

−8

00.511.52

Y

a

w

R

a

t

e

(

d

e

g

/

s

e

c

)

0.511.5200.511.520

R

o

l

l

R

a

t

e

(

d

e

g

/

s

e

c

)

−200−200

Time(c)

Time(c)Time(c)

Figure11.DoubletCommandtoWingtwistmorphing(left),Rollraterespon(middle),andYawRaterespon(right)

TherollrateandyawrateinFigure11aremeasuredinrespontothedoublet.Themeasurementsindicatethe

rollrateisconsiderablyhigherthantheyawrate.Thus,themorphingisclearlyanattractiveapproachforrollcontrol

becauofthenearly-purerollmotionmeasuredinrespontomorphingcommands.

Thedatafromopen-loopflightsisthenudtoapproximatealineartime-domainmodelusinganARXapproxi-

mation.Thismodelisgeneratedbycomputingoptimalcoefficientstomatchpropertiesobrvedinthedata.The

27

assumptionoflinearityisreasonablesincethemaneuversaresmalldoubletsaroundatrimcondition.

Theresultingmodel,havingpolesat-4.95and-0.1194,isudtosimulateresponsoftheaircraft.Thesimulated

andmeasuredvaluesofrollandyawratesareshowninFigure12.

150150

100100

5050

00

−50−50

−100−100

−150−150

−200−200

00.511.5200.511.52

Y

a

w

R

a

t

e

(

d

e

g

/

s

e

c

)

R

o

l

l

R

a

t

e

(

d

e

g

/

s

e

c

)

Time(c)Time(c)

Figure12.Simulated()andActual(—)RollRate(left)andYawRate(right)ResponstoaDoublet

Thesimulatedresponsshowgoodcorrelationwiththeactualdata.Themodelisthusconsideredareasonable

reprentationoftheaircraft.Theexistenceofsuchamodelisimportantforfuturedesignofautopilotcontrollersbut

itisalsovaluableforinterpretingthemorphing.Esntially,theabilitytoidentifyalinearmodelwithpolesrelating

totherollconvergenceandspiralconvergencemodesindicatetheaircraftwithmorphingactslikeanaircraftwith

ailerons.

13of17

VI.NewMorphingAircraftDesigns

A.Multi-pointWingShaping

Badonthesuccessofthewingwarpingaircraft,anadditionalvehiclewasdevelopedtoincorporateincread

controlofthewingshape.Specifically,thevehicleemployedariesofconcentrictorque-tubesparstocontrolthe

wingincidenceangleatfourpointsalongthespan.Suchamechanismextendedtheideaofwingtwistingbeyond

asingleactuationpointtoamorphingoftheentirewingsurface.Figure13showsthewingundergoingmorphing

toboththewingtipspartubeandtobothwingtipandmidboardspartubes.Thedeformationisvisuallyapparentby

examiningthelightreflectionsoffoftheleadingedgeandtheshapeofthetrailingedge.

Figure13.WingshapingMAVshowingneutralposition(left),wingtipmorphing(middle),andfullwingmorphing(right)

Concentrictubesparsactasbothprimaryload-bearingmembersandascontrollinkages(torque-tubes).Alarge

diametertubeisfixedtothefulageandactsasabearingsupportfortherotatingspars.Therootctionofthewing

surfaceisalsoattachedtothistube,creatinganimmobilejointbetweentheinboardwingsurfaceandfulage.Two

smallertubes,onewithintheother,aresupportedbythefixedtube.Thesmallesttubeextendsthefullspan,while

thecentertubeextendstothe60%position.Eachoftheoutboardandmidboardsparsisactuatedintwistviarvos

mountedinthefulage(Figure14).Eachrvoisthenabletocommandtheincidenceangleofthecorresponding

wingctionindependently.

Aflexiblewingsurfaceisattachedtoeachofthethreewingspartubes.Attachmentpointsnearthesparjointsare

leftunconstrainedinpitchangle.Thisfreedomallowstheincidencetosmoothlytaperbetweentherigidlyattached

to

ctionsofthewingsurface.Thisstructurepermitstwistmorphingofeachcontrolledwingctionfrom

incidenceangle.Eachofthefourwingctionsarecommandedindependently,allowingforconsiderabledifferential

orcollectiveconfigurability.

Figure14.Spartorque-tubemorphingactuators.The4frontrvosrotateconcentricsparctions,aft2controlrudderandelevator

14of17

Theaircrafthasundergonebasicperformanceandhandlingflighttests.Initialresultsindicatethattheaircraft

iscapableofachievingsignificantlyhigherperformancelevelsthanthepreviousmorphingcastudies.Adequate

rollcontrolisachievedbydifferentiallyactuatingthewingtipspars.Thehandlingqualitiesandmaximumrollrate

aresimilartothe24inwingtwistingaircraft.Actuatingtheentirewingdifferentially(i.e.usingbothwingtipand

midboardctions),achievesrollratesandperformancemeasuresconsiderablyhigher.Aswiththewingtwisting

aircraft,atmaximumrollrate,themulti-pointwingshapingvehiclebecomesdifficulttoeandestablishorientation.

Themorphingisalsobeingconsideredforuinconjunctionwithothercontrolsurfaces.Basicflighttestsof

combiningcollectivemidboardwingdeflectionwithelevatorcommandhaveshownpotentialforimprovementin

pitchrateperformance.Additionally,thismorphingmaybesuitedforquasi-staticallyreconfiguringthewingtwistto

optimizespanwiliftdistributioninflight.Suchtechniquesarecurrentlyudbysailplaneandcommercialjetpilots

toaltertheliftpropertiesofthewingforcrui,steepdescent,andmaximumperformanceflightphas.

B.VariableGull-WingAngle

Preliminaryflighttestshavebeencompletedofabiologically-inspiredvariationofthe24”morphingaircraft.This

MAVincorporatesavariableanglegull-wingmechanism,Figure15,thatisudtochangetheanglebetweenthe

inboardandoutboardwingctionsinflight.Themechanismusalinearlead-screwactuatortoquasi-staticallyvary

thegull-wingposition.Thequasi-staticmorphingisudtoinvestigatetheeffectofsuchadeformationontheflight

performanceofthevehicle.Specifically,itisofinterestforanaircraftwithanexpandedflightenvelope,capableof

performinglowairspeed,precimaneuvering,aswellashighspeeddashesandlongrangeenduranceflights.

Figure15.VariableGull-WingAngleMAV.Negativegull-wing(left),neutralgull-wing(middle),andpositivegull-wing(right)

Flighttestresultshaveshownthatthegull-wingangleconsiderablyaffectsbasicperformancemetricsoftheaircraft

suchasglideratio,stallcharacteristics,climbratio,andhandlingqualities.

C.Airigami-Foldingwing/tail

Aquasi-staticmorphinghasalsobeenimplementedonatandem-wingmicroairvehicle,Figure16,toallowtheaircraft

toachievetwodistinctmissionrequirementsinasingleflight.Theaircraftisdesignedtoachievestable,controllable

forwardflightforclimb,crui,andloiterphas,thentransitiontoreverflightforaslow,verticaldescent.Asingle

controlactuatorisudtosweepbothfrontandaftwingsforward,inadditiontocollapsingandextendingvertical

stabilizersurfaces.

Theaircraftincorporatesadual-wingsweepanglemorphingtochangethelocationoftheaircraftcenter.The

wingsaredesignedtosweepfarenoughforwardsuchthattheneutralpointbecomesforwardofthecenterofgravity.

Inthisconfiguration(Figure17),forwardflightisdestabilizedandreverflightisstabilized.

Inordertoimprovereverflightstability,thewingsweepincorporatesacollapsingverticalstabilizerontheaft

wingandanexpandingstabilizerontheforwardwing.Eachstabilizerisinitiallybuiltintothewingstructureand

allowedtoalongfoldnylonhinges.

Reverflightisachievedonlyindescentswithanearverticalflightpath.Assuch,thethrustfromthepropeller

rvesasbothadragproducerandasastabilizingdevice.Theprimarypurpoofthewingsandverticalstabilizer

duringthisdescentprofileistopreventthevehiclefromdivergingfromtheverticalattitude.Inthisorientation,the

thrustrvestodirectlycounteracttheweightoftheaircraftandslowthesinkrate.ThecurrentpowerplantusaDC

electricmotorwitha4:1gearreductiontoturna4”plasticprop.Thethrusttoweightratiooftheaircraftisslightly

lessthanone,allowingforasubstantialreductioninthesinkrateatfullthrottle.Alternativemotoroptionsmaybe

15of17

Figure16.Topview(left)andsideview(right)ofAirigamishowingunswept,forwardflightconfiguration

Figure17.Topview(left)andsideview(right)ofAirigami,showingsweptandfoldedreverflightconfiguration

udtoincreathrusttoweightratiotogreaterthanone.Insuchaca,thethrustcouldbeudtoachieveazerosink

rateandhovertheaircraftduringthedescentpha.Althoughtheaircraftisdesignedprimarilyforverticalrever

flights,otherdescentmodessuchasacontrolledflatspinorhigh-alpha,oscillatoryfallingleafmodemaybepossible

withthesweepmorphing.

VII.Conclusions

Thispaperdemonstratesthatmorphingisparticularlysuitableforaclassofmicroairvehicles.Themembrane

wingsonthevehiclescanbemorphedwithlittlepowerbutwithsignificantbenefits.Mechanismsthatarerelatively

simpleareshowntocaulargedeformationsusingdifferentstrategies.Ineachca,themorphingprovidesaeror-

voelasticcontrolthatisclearlyadequateformaneuvering.Flighttestsdemonstratethemorphingisabletocommand

turnsandspinswithsufficientauthorityforprecisionmaneuvering.Assuch,thewingshapingisanenablingtechnol-

ogyprovidingsomelevelofmissioncapabilitytothisclassofMAV.

References

M.J.Brenner,AerorvoelasticModelingandValidationofaThrust-VectoringF/A-18Aircraft,NASA-TP-3647,September1996.

I.M.Gregory,“DynamicInversiontoControlLargeFlexibleTransportAircraft,”AIAA-98-4323,1998.

16of17

S.M.JoshiandA.G.Kelkar,“InnerLoopControlofSupersonicAircraftinthePrenceofAeroelasticModes,”IEEETransactionson

ControlSystemsTechnology,Vol.6,No.6,November1998,pp.730-739.

B.D.Caldwell,“FCSDesignforStructuralCouplingStability,”TheAeronauticalJournal,December1996,pp.507-519.

E.Livne,“IntegratedAerorvoelasticOptimization:StatusandDirection,”JournalofAircraft,Vol.36,No.1,January-February1999,

pp.122-145.

R.W.Wlezien,G.C.Horner,A.R.McGowan,S.L.Padula,M.A.Scott,R.J.Silcox,andJ.O.Simpson,“TheAircraftMorphingProgram,”

AIAA-98-1927,April1998.

J.B.Davidson,P.Chwalowski,andB.S.Lazos,“FlightDynamicSimulationAsssmentofaMorphableHyper-EllipticCamberedSpan

WingedConfiguration,”AIAA-2003-5301,August2003.

P.G.Ifju,D.A.Jenkins,S.M.Ettinger,Y.Lian,W.Shyy,andM.R.Waszak,“Flexible-WingBadMicroAirVehicles,”AIAA-2002-0705,

January2002.

H.Garcia,M.Abdulrahim,andR.Lind,“RollControlforaMicroAirVehicleusingActiveWingMorphing,”AIAA-2003-5347,August

2003.

Y.LianandW.Shyy,“Three-DimensionalFluid-StructureInteractionsofaMembraneWingforMicroAirVehicleApplications,”AIAA-

2003-1726,April2003..

M.R.Waszak,L.N.Jenkins,andP.G.Ifju,“StabilityandControlPropertiesofanAeroelasticFixedWingMicroAirVehicle,”AIAA-2001-

4005,August2001.

G.A.Fleming,S.M.Bartram,M.R.Waszak,andL.N.Jenkins,“ProjectionMoireInterferometryMeasurementsofMicroAirVehicleWings,”

ProceedingsoftheSPIEInternationalSymposiumonOpticalScienceandTechnology,Paper448-16,August2001.

S.M.Ettinger,M.C.Nechyba,P.G.Ifju,andM.R.Waszak,“Vision-GuidedFlightStabilityandControlforMicroAirVehicles,”Proceedings

oftheIEEEInternationalConferenceonIntelligentRobotsandSystems,October2002,pp.2134-2140.

M.R.Waszak,J.B.Davidson,andP.G.Ifju,“SimulationandFlightControlofanAeroelasticFixedWingMicroAirVehicle,”AIAA-2002-

4875,August2002.

E.W.Pendleton,D.Bestte,P.B.Field,G.D.Miller,andK.E.Griffin,“ActiveAeroelasticWingFlightRearchProgram:Technical

ProgramandModelAnalyticalDevelopment,”JournalofAircraft,Vol.37,No.4,2000,pp.554-561.

S.Tung,andS.Witherspoon,“EAPActuatorsforControllingSpaceInflatableStructures,”AIAA-2003-1741,April2003.

M.J.Solter,L.G.Horta,andA.D.Panetta,“AStudyofaPrototypeActuatorConceptforMembraneBoundaryControl,”AIAA-2003-1736,

April2003.

R.W.Stone,andB.E.Hultz,SummaryofSpinandRecoveryCharacteristicsof12ModelsofFlying-WingandUnconventional-TypeAir-

planes,NACA-RM-L50L29,March1951.

M.AmprikidisandJ.E.Cooper,“DevelopmentofSmartSparsforActiveAeroelasticStructures,”AIAA-2003-1799,2003.

J.Blondeau,J.RichesonandD.J.Pines,“Design,DevelopmentandTestingofaMorphingAspectRatioWingusinganInflatableTelescopic

Spar,”AIAA-2003-1718.

J.Bowman,B.SandersandT.Weisshar,“EvaluatingtheImpactofMorphingTechnologiesonAircraftPerformance,”AIAA-2002-1631,

2002.

D.Cadogan,T.Smith,R.LeeandS.Scarborough,“InflatableandRigidizableWingComponentsforUnmannedAerialVehicles,”AIAA-

2003-1801,2003.

C.E.S.CesnikandE.L.Brown,“ActiveWarpingControlofaJoined-WingAirplaneConfiguration,”AIAA-2003-1716,2003.

J.B.Davidson,P.ChwalowskiandB.S.Lazos,“FlightDynamicSimulationAsssmentofaMorphableHyper-EllipticCamberedSpan

WingedConfiguration,”AIAA-2003-5301,2002.

J.M.GrasmeyerandM.T.Keennon,“DevelopmentoftheBlackWidowMicroAirVehicle,”AIAA-2001-0127,2001.

C.O.Johnston,D.A.Neal,L.D.Wiggins,H.H.Robertshaw,W.H.MasonandD.J.Inman,“AModeltoComparetheFlightControlEnergy

RequirementsofMorphingandConventionallyActuatedWings,”AIAA-2003-1716,2003.

L.Ljung,SystemIdentification,PrenticeHall,EnglewoodCliffs,NJ,1987.

P.deMarmierandN.Wereley,“MorphingWingsofaSmallScaleUAVUsingInflatableActuatorsforSweepControl,”AIAA-2003-1802.

B.Sanders,F.E.EastepandE.Forster,“AerodynamicandAeroelasticCharacteristicsofWingswithConformalControlSurfacesforMor-

phingAircraft,”JournalofAircraft,Vol.40,No.1,January-February2003,pp.94-99.

D.Viieru,Y.Lian,W.ShyyandP.Ifju,“InvestigationofTipVortexonAerodynamicPerformanceofaMicroAirVehicle,”AIAA-2003-

3597,2003.

M.R.Waszak,L.N.JenkinsandP.Ifju,“StabilityandControlPropertiesofanAeroelasticFixedWingMicroAerialVehicle,”AIAA-2001-

4005.

K.W.Iliff,“AircraftParameterEstimation,”NASA-TM-88281,1987.

R.C.NelsonFlightStabilityandAutomaticControlMcGrawHill,Boston,MA,1998.

17of17

最美初中生-见识多的成语

Flight Testing A Micro Air Vehicle Using Morphing F

本文发布于:2023-11-24 10:57:19,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1700794640224984.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:Flight Testing A Micro Air Vehicle Using Morphing F.doc

本文 PDF 下载地址:Flight Testing A Micro Air Vehicle Using Morphing F.pdf

标签:small
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|