首页 > 专栏

利用MODIS卫星资料反演北京地区气溶胶光学厚度

更新时间:2023-11-12 06:46:44 阅读: 评论:0

柳树下-月全

利用MODIS卫星资料反演北京地区气溶胶光学厚度
2023年11月12日发(作者:科举制)

利用MODIS卫星资料反演北京地区气溶胶光学厚度

杨东旭;韦晶;钟永德

【摘 要】大气气溶胶是影响城市环境空气质量的重要因素,同时对人类健康具有重

要影响.传统的气溶胶遥感反演方法多适用于海洋及植被等地表反射率较低的区域,

对于城市等高亮地表区域,地表反射率较高且难以确定,气溶胶反演面临巨大挑战.

对该问题,提出一种新的地表反射率的确定方法,将下垫面划分为暗地表和亮地表两

种类型,分别使用可见光与短波红外的线性关系和利用长时间序列MODIS表现反

射率数据使用最小值合成技术构建先验数据集的方法,确定其地表反射率,然后基于

辐射传输方程理论利用查找表方法,进行气溶胶光学厚度反演.选择下垫面复杂、空

气污染问题严重的北京市作为研究区,应用MO-DIS数据进行气溶胶反演实验,最后

使用北京站、香河站、北京CAMS站和北京RADI4AERONET气溶胶地基

观测数据和MODIS气溶胶产品对反演结果进行对比验证.结果表明该算法气溶胶

反演结果与地基观测数据具有较高的一致性(R2 =0.902),能以较高精度实现城市等

高反射率地区的气溶胶反演,反演精度与空间连续性上较MOD04有显著提高.

【期刊名称】《光谱学与光谱分析》

【年(),期】2018(038)011

【总页数】6(P3464-3469)

【关键词】气溶胶光学厚度;高亮地表;城市地区;MODIS;AERONET

【作 者】杨东旭;韦晶;钟永德

【作者单位】中南林业科技大学旅游学院,湖南长沙410004;浙江旅游职业学院,

江杭州311231;北京师范大学全球变化与地球系统科学研究院,北京100875;清华

大学地球系统科学系,北京 100084;中南林业科技大学旅游学院,湖南长沙410004

【正文语种】

【中图分类】P405

大气气溶胶是指悬浮在大气中尺度范围约为10-3~102 μm的固态、液态微粒与

气态载体共同组成的多相体系。气溶胶对太阳辐射的吸收和散射,直接影响大气辐

射平衡,不仅对局部地区生态环境、全球气候变化产生重要的影响,而且能够直接

危害人体健康[1-2]。随着遥感卫星技术的不断发展,大面积、大范围尺度的气溶

胶动态实时监测得以逐步实现,卫星遥感大气气溶胶的反演研究不断开展,气溶胶

的精确反演不但能够为当地环保部门生态环境保护和空气污染防治提供前期的数据

依据,而且对于维持生态系统平衡、区域可持续发展和全球气候变化研究等方面具

有重要的意义。

目前,国内外研究学者在气溶胶光学厚度遥感反演方面已经做了大量研究,并取得

了较大进展。当前应用最为普遍和成熟的算法为暗目标法(dark target, DT),也称

为浓密植被法[3-4]。该方法利用浓密植被在红光和蓝光波段反射率值较低,容易

确定的特点,通过辐亮度值与气溶胶较强的相关性去除地表贡献,实现气溶胶光学

厚度反演。浓密植被法的关键在于浓密植被像元地表反射率的确定,地表反射率最

初使用Kaufman1997年提出中红外波段地表反射率与红光、蓝光波段呈现较

为稳定的经验关系进行确定,后来经过不断改进,目前该算法已被广泛应用到

AVHRR(advanced very high resolution radiometer), OMI(ozone monitoring

instrument), TOMS(total ozone mapping spectroradiometer), SeaWiFS

(a-viewing wide field of view nsor)MODIS(MODerate resolution

imaging spectroradiometer)等多源传感器气溶胶反演研究中,具有较高的反演

精度[5-7]

对于浓密植被法无能为力的亮地表地区,Tanre1988年提出了结构函数法,该

算法假定在一定范围内复杂地表的大气透过率均相同,并在多种数据中取得了较好

效果[8],但缺点是该算法需要以清晰影像为基础,对几何校正的精度要求较高,

算法不够稳定,难于业务化运行。针对高亮度、稀疏植被地区气溶胶反演困难的问

题,Hsu[9-10]发现蓝光波段的地表反射率整体较低,如果能够确定地表反射率,

气溶胶仍然能够以较高精度反演,在浓密植被法的基础上提出了一种深蓝算法

(deep blueDB),利用SeaWiFS数据建立地表反射率库,在撒哈拉沙漠实现了

气溶胶的高精度反演; 除此之外,又先后发展了其他气溶胶反演算法,如MAIAC

(multi-angle implementation of atmospheric correction algorithm)[11],

SARA (simplified aerosol retrieval algorithm)[12]等,该些算法实现了高空间

分辨率的气溶胶光学厚度反演,并取得了可观的精度。

研究表明,与浓密植被地区相比,气溶胶在陆地上大部分稀疏植被覆盖区域的辐射

亮度信息中的标识性,虽然有不同程度的降低,但仍具有较高的标识性。针对传统

的气溶胶反演方法无能为力的稀疏植被及高亮地表区域,本文提出一种基于先验地

表反射率支持的气溶胶光学厚度遥感反演算法。该方法综合不同气溶胶反演算法的

优势,在浓密植被等暗像元区,采用浓密植被法确定地表反射率; 在亮地表地区,

利用MODIS长时间序列的表观反射率数据,利用最小值合成方法构建得到月合成

反射率数据库,提供地表反射率数据,进行气溶胶反演。这里选择北京市为例,应

MODIS数据,进行气溶胶反演实验,最后使用AERONET站点的气溶胶地基

观测数据和当前的MODIS气溶胶产品对反演结果进行了精度验证和对比。

1 实验部分

1.1 数据源介绍

MODIS是搭载在TerraEqua卫星上的一个重要传感器,具有36个离散光谱

通道,能够实现从可见光波段到热红外波段全光谱范围覆盖(0.4~14.4 μm),刈幅

宽为2 330 km。基于上述优势和特点,MODIS被广泛应用到地表、大气和海洋

等多个方面,并业务化地提供了地表反射率、气溶胶、冰雪云和土地覆盖等多种全

球长时间序列标准产品。MODIS 1BMODIS二级产品中的对地观测数据,该

数据仅经过仪器标定,未经过大气校正。本文选择空间分辨率为1 kmMODIS

L1B数据进行气溶胶反演实验。

1.2 卫星反演方法

陆地气溶胶反演的基本原理是利用植被在红光和蓝光波段较低的反射率,波长较短

且受大气散射的影响较强,卫星接收到的辐射能量对气溶胶光学厚度敏感性较强这

一特点,实现气溶胶反演。在假设地表朗伯体和大气均一的条件下,卫星接收到的

辐亮度值L可以表示为

L(τa,μs,μv,φ)=L0(τa,μs,μv,φ)+

μsF0T(τa,μs)T(τa,μv)

(1)

式中,μsμv分别为太阳天顶角和观测天顶角的余弦值,L0表示大气程辐射,

ρs表示地表反射率,S为大气下界的半球反照率,F0为大气顶层太阳光的辐射亮

度密度,φ为相对方位角,T(μs)和T(μv)分别表示大气下行透过率和大气上行透过

率。其中辐亮度值与表观反射率ρ*之间存在如式(2)关系

ρ*

(2)

上述两式结合可得气溶胶反演公式

ρ*(τa,μs,μv,φ)=ρ0(τa,μs,μv,φ)+

τa,μs)T(τa,μv)

(3)

可以看出,卫星气溶胶遥感本质上利用卫星辐射信息进行地气解耦的过程,进行气

溶胶反演,首先需要确定地表反射率。针对传统的气溶胶反演方法在不同地表上地

表反射率确定的问题,本文提出一种新的地表反射率确定思路,即将陆地表划分为

暗地表和亮地表两种典型区域,然后使用不同的方法确定地表反射率,以此提高气

溶胶反演精度。

暗地表区域主要包括浓密植被地区,植被存在明显的季节变化规律,在生长季,地

表反射率能够在较短时间发生明显的变化,相反在非生长季或者冬季,其地表反射

率可以保持长时间不变。研究发现,在浓密植被地区,蓝光和红光波段的地表反射

率整体较低,且与短波红外波段存在较为明显和稳定的线性关系,同时,短波红外

受大气影响较低,其表观反射率可近似为地表反射率,因此,可见光波段的地表反

射率可以通过与短波红外表观反射率的拟合关系计算得到,即暗目标法。实验验证

表明该方法在暗地表地区具有较高的稳定性,气溶胶反演精度整体较高,因此,这

.21+0.002Θ

0.000 25Θ+0.033

(7)

其中ρ0.47, ρ0.66分别表示0.470.66 μm的地表反射率,,分别表示1.56

2.13 μm的表观反射率,Θ为散射角。

亮地表区域主要包括沙漠、干旱或半干旱地区、稀疏植被地区及城市等地区,该些

地区的地表反射率较高,与短波红外波段不存在稳定的关系,难以准确估计,但是

该些地区的地表反射率受时间变化的影响较小,基本保持不变,且地表双向反射特

性明显弱于植被地区。通过使用6S模型模拟MODIS蓝光波段的表观反射率在不

同地表反射率下,随气溶胶光学厚度变化的关系发现,即使地表反射率达到0.1

上,两者仍存在较为明显的变化关系,因此,只要能够较为准确的确定其地表反射

率,就能实现在该地区的气溶胶光学厚度反演。在本文,基于在一个月时间内,大

多数高亮地表地物的地表反射率变化很小或保持不变[14-15],利用长时间序列的

MODIS L1B表观反射率数据,使用最小值合成技术,构建得到每月一幅清晰、受

大气影响最小的表观反射率数据集,并近似看作地表反射率,支持高亮地表气溶胶

光学厚度反演。在构建数据库过程中,为了减小云阴影、山体阴影以及云污染的影

响,同时移除影像中的负值和无效值,使用倒数第二小值合成的方法对一个月内所

MODIS L1B表观反射率数据进行月合成,得到该月份的地表反射率数据集。

对于气溶胶类型,选择能够较为准确描述北京地区气溶胶微粒状况的大陆型气溶胶

[16],提供并确定所需的散射相函数、单次散射反照率和不对称因子等关键参数,

观测几何条件由MODIS L1B数据提供,而后利用MODIS光谱响应函数应用6S

模型分别构建蓝光波段和红光波段的查找表,利用上述方法确定暗地表和亮地表区

域的地表反射率,应用于MODIS L1B表观反射率数据,进行气溶胶反演。

1.3 精度验证方法

本文选择Aerosol Robotic Network (AERONET)站点的气溶胶地基观测数据对本

文气溶胶反演结果进行精度验证。卫星反演得到的是550 nm处的气溶胶光学厚

度,然而AERONET数据没有提供该波长处的AOD观测值,因此,为了实现两者

匹配,使用Ångström算法[(8)]440, 500675 nmAOD地基观测数据,

插值到550 nm[17]

AOD550=AODλ(550/λ)-α

(8)

式中,α440675nm处的Ångström指数,λ为波长。

2 结果与讨论

根据上述气溶胶光学厚度反演算法流程,以北京市为例,分别选择20146

9MODIS 1B数据,首先利用最小值合成技术构建得到蓝光和红光两个波段

6月—94幅月合成的表观发射率数据,提供高亮地表的真实反射率数据,而后

除去云、雪等大气影响的数据,然后进行气溶胶光学厚度反演实验。选择北京站、

香河站、北京CAMS站和北京RADI4AERONET站点进行气溶胶精度验证。

为降低或减小大气不稳定、图像中云像元干扰等状况,选择与地基站点坐标相同的

反演结果对应3×3领域内气溶胶反演结果的平均值作为气溶胶反演值; 同时,以

卫星过境时间为基准,选取卫星过境前后30 min内所有AERONET站点气溶胶观

测值的平均值作为真实AOD值,对气溶胶反演结果进行精度验证。图1为不同

AERONET站点气溶胶反演值与实际观测值的时间序列对比曲线图,表1为精度验

证统计结果。

1 北京地区气溶胶反演结果与AERONET地基观测值的时间序列图Fig.1 Time

ries of retrieved AOD with AERONET ground-measurements in Beijing

由图1可以看出,气溶胶光学厚度的反演范围为02,能够满足不同气溶胶浓度

下,反演结果验证的基本要求。验证结果表明本文的气溶胶反演结果与AERONET

地基观测数据具有整体较高的一致性,两者时间变化趋势较为一致。整体来看,气

溶胶反演结果整体略高于地面观测值,原因是在高亮地表上,特别是城市中心区,

由于其地表反射率整体较高,地表反射率估计的不准确性能够带来一定的误差。在

气溶胶浓度值较低时(AOD<0.5),气溶胶反演结果与实测值整体较为接近,绝对

误差相对较小; 相反,在气溶胶浓度值较大时(AOD>1.0),本文算法反演得到的

气溶胶结果与地基观测数据仍然具有较高的吻合度,说明在空气污染较为严重的情

况下,该方法仍然能够以较高精度实现城市地区的气溶胶光学厚度反演。同时我们

可以看出,在夏季,AOD值高于1.0的天数较多,整体超过了三分之一,说明北

京地区面临较为严重的空气污染问题,因此,该算法对于城市空气质量监测具有重

要的意义。

1 北京地区气溶胶反演结果验证Table 1 Validation of AOD retrievals in

Beijing观测站点观测数目拟合方程相关系数绝对误差相对误差误差线内比重/%

京站34y=0.914x+0.0680.9030.11935.5273.53香河站

42y=0.930x+0.0720.8650.16236.8770.83RADI

28y=1.051x+0.0420.9300.09946.1775.00CAMS

41y=0.889x+0.0880.9400.10432.9170.73总计

145y=0.931x+0.0690.9020.12137.5372.52

2 北京地区气溶胶反演结果和MOD04气溶胶产品空间分布图Fig.2 Spatial

distributions of retrieved AOD and MOD04 AOD products over Beijing

统计结果得到,在北京、香河、北京RADI站和北京CAMS站四个站点共获得有

效观测点对分别为34422841对,点数少的原因主要是云污染的影响及缺

少地基观测数据。线性回归分析表明,在不同站点,气溶胶反演结果与地基观测数

据存在较高的一致性,相关系数分别为0.9030.8650.9300.940,绝对误

差整体较小,分别为0.1190.1620.0990.104,相对误差整体低于50%

分别有73.53%70.83%75.00%70.73%的气溶胶观测点对满足MODIS DB

气溶胶产品(10 km)在陆地上的误差[±(0.05+20%)]精度要求。整体看来,本文气

溶胶反演算法具有整体较高的反演精度,两者具有较高的一致性(R2=0.902),绝

对相对误差为0.121,相对误差为37.53%,有72.52%的反演结果满足MODIS

误差精度要求。可以说明本文提出的算法稳定性较高,能够以较高精度实现城市等

高亮地表的气溶胶光学厚度,特别是在空气污染严重的情况下。

为了进一步验证本文算法的精度,选择时相一致的北京地区MOD04气溶胶产品

与本文气溶胶反演结果进行精度对比与分析。分别选择3MODIS数据进行气

溶胶空间分布状况对比,影像获取时间分别为2014623日、20148

15日和201495日,三幅影像气溶胶空间分布具有一定的差异。图2为本

文气溶胶反演结果与MOD04气溶胶产品空间分布对比图,第一排为MODIS

始真彩色合成图(波段:3-4-1),第二排为MOD04气溶胶产品,第三排为本文气

溶胶反演结果。由图中可以看出,两种气溶胶反演结果在空间分布上具有较好的一

致性,北京地区气溶胶空间分布规律明显,在北京地区东北部植被覆盖度较高的地

区,气溶胶光学厚度整体较低; 相反在北京市中部及东南部等城市地区,气溶胶

浓度值整体较高。然而,可以明显看到MOD04气溶胶产品由于较低的空间分辨

(10 km),气溶胶空间分布较为粗糙,尤其在植被和城市地区的过渡地带; 同时,

由于暗目标法在城市中心等高亮地区的限制性,导致较为严重的缺失值现象,空间

连续性整体较差。相反,本文气溶胶反演算法有效解决了传统气溶胶反演方法在城

市地区反演困难的问题,同时,与MOD04气溶胶产品相比,本文气溶胶反演结

果的空间分辨率(1 km)较高,空间连续性较好,能够更细致、准确描述城市地区

气溶胶空间变化情况。然而,由于本文没有进行云检测和滤除,导致在部分地区呈

现异常的极值现象。为了定量化比较两种产品的精度,分别获取对应时间的

AERONET站点的本文气溶胶反演结果和MOD04气溶胶产品,共获得56对有效

点对,验证结果表明(3),与MOD04气溶胶产品相比(R2=0.856

RMSE=0.142),本文气溶胶反演结果与AERONET地基观测数据具有更高的相关

(R2=0.916),均方根误差更小(RMSE=0.111),说明在北京地区,本文气溶胶反

演算法精度整体优于MOD04气溶胶产品。

3 本气溶胶反演结果(1 km)MOD04气溶胶产品(10 km)AERONET AOD

观测值间的精度对比Fig.3 Comparisons of common retrievals between our

AOD (1 km) with MOD04 AOD (10 km)products against AERONET AOD

measurements over Beijing

3

目前,针对不同卫星已经发展了多种气溶胶遥感反演方法,这些方法仅能够对浓密

植被覆盖、海洋等低地表反射率地区具有较高的反演精度,然而对于城市、沙漠等

稀疏植被覆盖的高亮地表区域,气溶胶反演面临巨大挑战,成为当前气溶胶遥感反

演的热点。针对该问题,提出一种新的适用于高亮地表区域的气溶胶反演方法,该

方法利用MODIS表现反射率数据构建先验地表反射率数据库,应用6S辐射传输

模型,构建不同几何观测条件、大气模式、气溶胶模式等条件下的查找表,选择北

京市为研究区,使用MODIS 1B数据进行气溶胶反演实验。最后使用AERONET

地基观测数据和MODIS气溶胶产品对反演结果进行对比和精度验证。结果表明,

气溶胶反演结果与AERONET地基观测具有较好一致性(R2=0.902),能以较高精

度实现暗地表和亮地表地区的气溶胶反演精度,同时,在空间连续性和细致性明显

优于MODIS气溶胶产品。

References

【相关文献】

[1] Colvile R N, Hutchinson E J, et al. Atmos. Environ., 200135(9): 1537.

[2] Kocifaj M, Horvath H, Jovanovi’O, et al. Atmos. Environ., 2006,40(11): 1922.

[3] Kaufman Y J, Sendra C. International Journal of Remote Sensing, 19889(8): 1357.

[4] Kaufman Y J, Tanre D, Remer L A, et al. J. Geophys. Res. Atmos., 1997102(D14):

17051.

[5] Riffler MPopp CHaur Aet al. Atmos. Meas. Tech.2010, 3(5): 1255.

[6] Sayer A MHsu N CBettenhaun Cet al. Atmos. Meas. Tech., 2012, 5(7)1761.

[7] Levy R C, Mattoo S, Munchak L A, et al. Atmos. Meas. Tech., 2013, 6(1)159.

[8] Tanre D, Deschamps P Y, Devaux C, et al. J. Geophys. Res., 1988, 93(D12)15955.

[9] Hsu C N, Tsay S C, King M Det al. IEEE Transactions Geoscience and Remote Sensing,

200442(3): 557.

[10] Hsu C N, Tsay S C, King M Det al. IEEE Transactions Geoscience and Remote

Sensing, 200644(11): 3180.

[11] Lyapustin AWang YLaszlo Iet al. J. Geophys. Res. Atmos., 2011, 116(D3): 613.

[12] Bilal MNichol J EBleiweiss M Pet al. Remote Sens. Environ.2013, 136135.

[13] Levy R C, Remer L A, Mattoo S, et al. Journal of Geophysical Rearch, 2007, 112

D13211.

[14] Sun L, Wei J, Wang J, et al. J. Geophys. Res. Atmos., 20161217172.

[15] Sun L, Wei J, Bilal M, et al. Remote Sensing, 20158(1)23.

[16] Wei J, Sun L. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.201710835.

[17] Wei J, Huang B, Sun L, et al. J. Geophys. Res. Atmos., 2017122(24): 13338.

方腊与宋江-字开头的成语接龙

利用MODIS卫星资料反演北京地区气溶胶光学厚度

本文发布于:2023-11-12 06:46:44,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1699742804213292.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:利用MODIS卫星资料反演北京地区气溶胶光学厚度.doc

本文 PDF 下载地址:利用MODIS卫星资料反演北京地区气溶胶光学厚度.pdf

标签:大气气溶胶
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|