首页 > 专栏

冀中南平原区气溶胶标高变化及估算模型研究

更新时间:2023-11-12 05:18:37 阅读: 评论:0

关于兔子的作文-极性氨基酸

冀中南平原区气溶胶标高变化及估算模型研究
2023年11月12日发(作者:秋天是丰收的季节)

2021492

Vol.49. No. 2,2021

KARTHANDENVIRONMENT

147

1

1111

郭云娟

111

(

1.050024;

2.050024)

,石

:作广

模型

2009-2016MOD1SPeterson

冬季

西

2016

湿

61. 8%10%这对

:冀

Peterson

170.4510 1672-9250(2021)02-0147-10 : 10. 14050/.. 1672-9250.202丨.49.025

Adoijcnki

80

导致

线

^

4 。虽

km

/ )

LS//,aerosolscaleheight

1/时所处的

e

。构

。作

。遥

)地面

AOD-AerosolOpticalDepth

h2i。

Peterson

广

^5]。 0反演

MODSAD

Peterson

2_4]。

[5_8:9]在移 *

Welum

稿

2020-06-14;2020-07-30

D2019205027);QN2018035);L2018B20)

1998-)E-maU:******************.

* 1987-)E-mail:UfU****************.

148

2021 年

80. 1%19.9%-

MO

iHSAD

0 3 利用

Peterson

广

0

MDIS

17:,

U

Peterson

2009~2016

MI)ISAI

() 0)

1研究区概况

,

7

82,50 1),是

kmm

使

®。此

,

2数据与方法

2.1

(1)2009~2〇160

MODSAD

间分辨率为1〇 10 ,资地球

kmxkmNASA

)基 (

EOSAqua

13:30^001300可以通过~八5入

10. 2 0

ArcGSMODISAD

114°E 117°E

f

f

3

z

f

6

o

1

s

N

z

9

o

s

114° E 117° E

1

Fig. 1 Altitude distribution of study area

(2)2009~201663

湿

1980

),经气

km

m。我国

k

42: 008: 00

14:00 20: 002: 008: 0()20: 00

能见

线

使

14:00

湿

//>90%)

2.2 研究方

2. 2. 1

Peterson

^

k

3.912

2

: 化及型研

WK

149

^^^^^^^,*

Rayleigh

=

15 = 1 013 )

tPhPa

线

;|3|9_~,/、

IASW

AOD

AOD

=-—0. 0116 * ASH (2)

/3.912

PetersonlKoschmieder

等.:..

〇.20.05,并

0. 014 6,以

Rayleigh

。许模型

PHerson

0能见度关

AD

12°]。

0

ADPeterson

。在0

AD

Peterson

M3’22]。

2.2.2

冬季

湿

-

Peter

_

Pearson

SPSS

YaXbXcXdX

ash

= + + (3)

,2, + 4 + ■

..

hsA

<1、/;<^

3气溶胶标高时空变化特征

3.1时间变化

22009~206

20112022014

。其

20102032016

2016

0.88

km

2009-20122014-2015

20106

达到了 6

km

相较

20132016

678

3~49〜10而受

2015~20161

km

32009 ~ 2016

K

03

ADa

13. 38~ 14.5520158

14. 16。0

AD

8

(3102013

20142016

020160

ADAD

0.61使

3.2

3.2.1

4

441121

a

西

1.40- 1.61 ,而

km

2. 16-2.50 24),冀

kmb

. 86 ;最

Ikm

3. 78 4~43~5

kmce

3.60-4. 11

km

2. 5 ~ 2. 8 3

km

。进

44),高

fg

2009 2010 2011 2012 2013 2014 2015 2016

年份

2

FigTemporalvariationof

. 2

ASH

1.6

1.4

1.2

1.0

0.8

<

0.6

0.4

0.2

0.0

2008 2010 2012 2014 2016 2018 2008 2010 2012 2014 2016 2018

年份 年份

3 20092016)()时

aAODb

FigTemporalvariationofasonalaveragevisibilityaandAODbfromto

. 3 () () 2009 2016

5.88 8

km

西4。进

h

9

2.58~3.95 4),8

kmi

10

4. 17 (4)11

kmj

41,2.29 nl,

k

西西

3.2.2

52009~2016

2

化及塑研

K

151

4

FigSpatialdistributionofmonthlymeanASH

. 4

--5),

a

3. 7 ;而

km

2. 91

km

5)大部

b

4.00

km

5.04 2016

3. 83

km

5 )

c

1.99~3. 23

km

5 (1)2.58 ,主要

km

西

1.73 52009

kme

西

152

2021 年

z ((km)

溶胶紅卨

r.i

: 3.71286

fit

: 2.92424

A

: 3.23206

1.99636

5

Fig. 5 Spatial distribulions of asonal and annual mean ASHs

。研

3.65 。此

km

3. 3

km

2_69 ~ 3.0

km

。在

湿

湿

湿

。秋湿

西

导致

。为

2

估箅

K

153

3.3

3.3.1

SPSSPearson

。其

.〇5

。其))气压

MSWt

()7)湿/?//)、£)

PLG

)

V

2016

1

Table 1 Correlation between and

ASH

meteorological factors

气象要素

气溶胶标高

相关系数标准误差

气温

0. 574

0.013

气压

-0. 171 •

-0. 231

地面温度

0. 573 **

0. 012

相对湿度

0. 215"

0. 176

水汽压

0. 564 "

0. 016

能见度

0. 506 "

0.020

水平风速

-0. 014

0. 200

**代表其通过了

0.01

关性关系

气溶

湿

99%

水汽

0.5,且0.20;而

湿-0.171

0.215。与

-0.014,相95%

湿

3. 3.2

2009~2016

湿

线

SPSS

6

2

2

Table 2 Regression of and meteorological factors

ASH

气象要素

AS"

回归系数

标准误差

P

R2

水气压

0. 1280.0110.000

气温

-0. 055

0. 0140. 000

气压

0.0450.0020. 000

相对湿度

-0. 0510. 005

0. 0000. 618

能见度

0. 185

0. 007

0.000

地面温度

0. 2600. 0090. 003

截距

-44. 452

ftGoodnessofFit

),它

I

0. 1~0. 30. 3~0.50. 5

0.5,拟

0.618,///)

fLS

61. 8%6

P

湿

0.05,表6

6

ASH = 0. 218£ - 0. 055/ + 0. 045 RH

P

- 0.051 +

0. 185 + 0. T_G 44. 452 (4)

V

026 -

0.786,较

//)的

MS

6

5

= 线

yx

5

6

154

2021

8

6

|

4

^

_

••LSTf

6

Fig. 6 The scatter fitting diagram of measured and

calculated ASH value

2009~201663

为0.00~4. 11,0.635,其

50.555,高5

1.318。虽

72009

~ 2016

--

~ 1 %之说明

20% ~

48_ 15%西

过了 200 )

m

1//计。而

ZS

4结论

0

MODISAD

Peterson

Pearson

主要

1)在

| 20%~48.15%

20 40 80 km

7 2009~2016

Fig. 7 Relative error between mean MODIS-ASH and

simulated-ASH from 2009 to 2016

201120122014

2010201320162016

西

2))气压

Z

()7)湿/?//)、£)

PLG

)

K

。通

61. 8%

绝大

0~ 10%

2

南平原区

155

Pearson

[1].U_.201,54(5) : 1174-1181.

[2 ] Wu H , Zhang Y , Han S, et al. Vertical characteristics of F>M2 5 during the heating ason in Tianjin, China[J]. Science of the Total Environ­

ment, 2015, 523, 152-160.

[3].MODIS[J].2016,36(5) :655-660.

[4 ] Peng Z R , Wang D , Wang Z, et al. A study of vertical distribution patterns of PM2 5 concentrations bad on ambient monitoring with unmanned

aerial vehicles A ca in Hangzhou, China[ J ] . Atmospheric Environment, 2015,123 357-369.

[5] .PM2 5[.2020,49(4) :43-52.

线

[6] Matthias V. Vertical aerosol distribution over Europe Statistical analysis of Raman lidar data from 10 European Aerosol Rearch Lidar Network

(EARLINET) stations[J]. Journal of Geophysical Rearch, 2004,109(018).

[7 ] Huang Z, Huang J, Bi J , et al. Dust aerosol vertical structure measurements using three MPL liclars during 2008 China-U. S. joint dust field ex­

periment [J ] . Journal of Geophysical Rearch, 2010,115.

[8] Sicard M , Reba M N M , Rocadenbosch F, et al. Seasonal variability of aerosol optical properties obrved by means of an elastic-Raman lidar

over Northeastern Spain[J]. Atmospheric Chemistry and Physics, 2010, 10(6) 175-190.

[9] Welton E J. Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropul lidars[J]. Journal of Geo­

physical Rearch, 2002,107( D19).

[10] Streets D G, Fu J S, Jang C J, et al. Air quality during the 2008 Beijing Olympic Games[J]. Atmospheric Environment ,2007, 41(3) 480-

492.

[11] He J, Wu L, Mao H , et al. Development of a vehicle emission inventory with high temporal-spatial resolution bad on NRT traffic data and its

impact on air pollution in Beijing-Part 2 Impact of vehicle emission on urban air quality^ J . Atmospheric Chemistry and Physics,2016,16( 5

)

3171-3184.

[12] Peterson J T, Fee C J. Visibility-atmospheric turbidity dependence at Raleigh, North Carolina[J]. Atmospheric Environment, 1981 , 15( 12

)

2561-2563.

[13] [J].2006(5) :532-535.

等.沿

[14] .[<1].2020,56(2):231-241.

[15] .[J].2015,44(6) : 151-159.

[16] [J].2015,28(2) : 190-197.

等.

[17] Xiao Q, Wang Y, Chang H, et al. Full-coverage high-resolution daily PM2 5 estimation using MAIAC AOD in the Yangtze River Delta of China

[J], Remote Sensing of Environment, 2017, 199 437-446.

[18] .[J].2011,37(9): 1 126-1 133.

[19 Han X,Zhang M , Han Z,et al. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia [ J . Atmospheric. Environment

2011 , 45 6576-6592.

[20] Yu J, Gong W , Zhu Z. Optimized transformation model of aerosol optical depth and visibility bad on Gaussian curve[J]. Journal of Remote

Sensing, 201115(5): 1008-1014.

[21 ] Sun X,Yin Y , Sun Y, et al. Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China J]. Atmospheric Environment,

2013,81:245-252.

[22] Peterson[J].201136(9):1025-029.

156

2021 年

Variation of Aerosol Scale Height in South Central Hebei Plain and

Its Evaluation Model

ZHANGZhengtengZHANGLingyun,SHENTanLIFuxing

', 1 1, 1'2,

ZHANGJiayiUXinyueGUOYunjuanJIWentaoUYuan

1 , ' , ' , 1 , '

(1. Hebei Normal University, College of Resources and Environmental Science, Shijiazhuang 050024, China

2. Laboratory of Knvironmental Evolution and Ecological Construction, Shijiazhuang 050024, China)

Abstract

As an important parameter to reflect the vertical distribution of atmospheric aerosol, aerosol scale height ( ASH) has been

widely applied to aerosol inversion and model revision. The Peterson Model and Multiple Regression Analysis are employed to evaluate

the temporal-spatial variation of aerosol scale height in South Central Hebei Plain (SCHP) and to build its evaluation model bad on

llie meteorological obrvation data and MODIS satellite inversion dala from 2009 to 2016. I he results show that the

ASH is highest in

summer, then in spring and autumn, and lowest in winter. The annual mean

ASH is lowest in 2016 during the study period. In addi­

tion ,the ASH indicated the spatial distribution patterns with high in northeast and low in southwest. And the low ASH mainly located in

the piedmont of Taihang Mountain, while the high

ASH in the north areas of SCHP. The ASH is significantly correlated to the air tem­

perature ,air pressure, ground temperature, relative humidity, vapor pressure and visibility. Using the Multiple Regression Analysis,

tile empiriral estimation model of

ASH is built according to the meteorological factors. The analyzing results of empirical model indicate

that the meteorological factors could account for the 61. 8% variations of

ASH. The relative error between MODIS-ASH and simulated

ASH is almost less than 10%. Understanding the variation of/IS" and estimating the /LS" values has important implications for the in-

version of aerosol concentration and for the management of atmospheric environment in SCHP.

Key words

South Central Hebei Plain aerosol scale height temporal-spatial variation Peterson Model Multiple Regression Analy-

学生会述职报告-秋天的记忆

冀中南平原区气溶胶标高变化及估算模型研究

本文发布于:2023-11-12 05:18:37,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1699737517213241.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:冀中南平原区气溶胶标高变化及估算模型研究.doc

本文 PDF 下载地址:冀中南平原区气溶胶标高变化及估算模型研究.pdf

标签:大气气溶胶
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|