首页 > 专栏

Challenges for Rechargeable Li Batteries

更新时间:2023-11-05 17:09:09 阅读: 评论:0

独特反义词-水浒传读后感

Challenges for Rechargeable Li Batteries
2023年11月5日发(作者:望批准)

Chem.Mater.2010,22,587–603587

DOI:10.1021/cm901452z

ChallengesforRechargeableLiBatteries

JohnB.Goodenough*andYoungsikKim

TexasMaterialsInstitute,UniversityofTexasatAustin,Austin,Texas78712

ReceivedMay27,2009.RevidManuscriptReceivedJuly9,2009

ThechallengesforfurtherdevelopmentofLirechargeablebatteriesforelectricvehiclesare

reviewed.Mostimportantissafety,whichrequiresdevelopmentofanonflammableelectrolytewith

eitheralargerwindowbetweenitslowestunoccupiedmolecularorbital(LUMO)andhighest

occupiedmolecularorbital(HOMO)oraconstituent(oradditive)thatcandeveloprapidlyasolid/

electrolyte-interface(SEI)layertopreventplatingofLionacarbonanodeduringafastchargeofthe

battery.AhighLi

þ-4

-ionconductivity(σ>10S/cm)intheelectrolyteandacrosstheelectrode/

Li

electrolyteinterfaceisneededforapowerbattery.Importantalsoisanincreainthedensityofthe

storedenergy,whichistheproductofthevoltageandcapacityofreversibleLiinrtion/extraction

into/fromtheelectrodes.Itwillbedifficulttodesignabetteranodethancarbon,butcarbonrequires

formationofanSEIlayer,whichinvolvesanirreversiblecapacityloss.Thedesignofacathode

compodofenvironmentallybenign,low-costmaterialsthathasitselectrochemicalpotentialμ

C

well-matchedtotheHOMOoftheelectrolyteandallowsaccesstotwoLiatomspertransition-metal

cationwouldincreatheenergydensity,butitisadauntingchallenge.Tworedoxcouplescanbe

accesdwherethecationredoxcouplesare“pinned”atthetopoftheO2pbands,buttotake

advantageofthispossibility,itmustberealizedinaframeworkstructurethatcanacceptmorethan

oneLiatompertransition-metalcation.Moreover,suchasituationreprentsanintrinsicvoltage

limitofthecathode,andmatchingthislimittotheHOMOoftheelectrolyterequirestheabilityto

tunetheintrinsicvoltagelimit.Finally,thechemicalcompatibilityinthebatterymustallowalong

rvicelife.

Introduction

Itisnowalmostuniversallyrecognizedthatgaous

emissionsfromtheburningoffossilfuelsandbiomassare

notonlypollutingtheairoflarge,moderncitiesbutare

alsocreatingaglobalwarmingwithalarmingcon-

quences.Moreover,adependenceonforeignoiland/or

gascreatesnationalvulnerabilitiesthatendangersocial

stability.Theconcernsareconcentratingattentiononce

againonnationalinitiativestoreevaluateutilizationof

alternativeenergysourcesandreplacementoftheinternal

combustionenginewithawirelesselectricmotor.

Solarradiation,wind,andwavesreprentenergy

sourcesthatarevariableintimeanddiffuinspace.

1

Thesourcesrequireenergystorage.Nuclearreactors

provideaconstantenergysourcewithassociatedpro-

blemsofradioactivewastedisposal.Geothermalenergyis

restrictedinlocation.Theenergysourcesalsobenefit

fromelectricalenergystorage.Theenergycarriersarethe

electricitygrid,electromagneticwaves,andchemicalen-

ergy.Themostconvenientformofenergystorageis

portablechemicalenergy,whichisthereasonforour

addictiontofossilfuelsforheat,propulsion,lighting,and

communication.Thebatteryprovidestheportabilityof

Acceptedaspartofthe2010MaterialsChemistryofEnergyConversion

SpecialIssue.

*Authortowhomcorrespondenceshouldbedirected.E-mail:

jgoodenough@.

r

2009AmericanChemicalSociety

storedchemicalenergywiththeabilitytodeliverthis

energyaselectricalenergywithahighconversioneffi-

ciencyandnogaousexhaust.Moreover,thealternative

energysourcesarepreferablyconvertedtod.c.electrical

energywell-matchedtostorageaschemicalenergyina

battery.Whereasalternativeenergysourcesarestation-

ary,whichallowsothermeansofenergystoragetobe

competitivewithabattery,electricvehiclesrequirethe

portablestoredenergyofafuelfedtoafuelcellorofa

battery.Therefore,ofparticularinterestisalow-cost,

safe,rechargeable(condary)batteryofhighvoltage,

capacity,andratecapability.

Thehigherstoredvolumeandgravimetricenergy

densityofaLibatteryhasenabledrealizationofthe

cellulartelephoneandlap-topcomputer.However,cost,

safety,storedenergydensity,charge/dischargerates,and

rvicelifeareissuesthatcontinuetoplaguethedevelop-

mentoftheLibatteryforthepotentialmassmarketof

electricvehiclestoalleviatedistributedCO

2

emissions

andnoipollution.

2

Abatteryconsistsofagroupofinterconnectedelectro-

chemicalcells.Here,wefocusonbatteriesforelectric

vehicleswherecost,gravimetricenergydensity,andthe

performanceuniformityofindividualcellsinalarge,

multicellbatteryareofmoreconcernthanthevolume

energydensityconsideredcriticalforhand-heldappli-

ances.Moreover,weconsideronlythechoiceofactive

materialsintheindividualcellsofacondarybattery,

/cmPublishedonWeb08/28/2009

588Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

viz.theanode(negativeelectrode),thecathode(positive

electrode),andtheelectrolytebetweentheelectrodes.

PreliminaryConsiderations

intheelectrodesandtheelectrolyteofathermodynami-

Figure1isaschematicoftherelativeelectronenergies

callystablebatterycellhavinganaqueouselectrolyte.

Theanodeisthereductant,thecathodeistheoxidant,

andtheenergyparationE

molecularorbital(LUMO)andthehighestoccupied

molecularorbital(HOMO)oftheelectrolyteisthe“win-

g

ofthelowestunoccupied

dow”oftheelectrolyte.Thetwoelectrodesareelectronic

conductorswithanodeandcathodeelectrochemical

potentialsμ

withaμabovetheLUMOwillreducetheelectrolyte

unlessapassivationlayercreatesabarriertoelectron

energiesandμ(theirFermiε).Ananode

ACF

A

transferfromtheanodetotheelectrolyteLUMO;a

cathodewithaμ

electrolyteunlessapassivationlayerblockselectron

C

belowtheHOMOwilloxidizethe

transferfromtheelectrolyteHOMOtothecathode.

Therefore,thermodynamicstabilityrequireslocating

theelectrodeelectrochemicalpotentialsμandμwithin

thewindowoftheelectrolyte,whichconstrainstheopen-

circuitvoltageVofabatterycellto

AC

oc

eV¼μ-μð1Þ

ocg

AC

eE

whereeisthemagnitudeoftheelectroncharge.A

passivatingsolid/electrolyte-interface(SEI)layeratthe

electrode/electrolyteboundarycangiveakineticstability

toalargerVprovidedthateV-Eisnottoolarge.

ococg

circuitwheretheydoufulworkbeforeenteringthe

Ondischarge,electronsleavetheanodeviaanexternal

cathode.Toretainchargeneutralityintheelectrodes,

cationsarereleadfromtheanodetotheelectrolyteand

theworkingcationoftheelectrolyte,theH

aqueouselectrolyte,carriespositivechargetothecathode

toprovidechargeneutralityinthecathode.Theprocessis

reverdonchargeinarechargeable(condary)battery.

þ

ioninan

capacityofreversiblechargetransferperunitweight(Ah/

TheenergydensityofabatterycellisΛV

g)betweentheanodeandcathode.Λdecreaswiththe

oc

;Λisthe

rateofchargeordischarge,i.e.themagnitudeofthe

electroniccurrentintheexternalcircuit,whichmustbe

matchedbytheinternalioniccurrentwithinthebattery.

Sincetheioniccurrentdensityoftheelectrolyteand

electrodes,includingtherateofiontransferacrossthe

electrode/electrolyteinterface,ismuchsmallerthan

theelectroniccurrentdensity,theelectrodesandelectro-

lytehavealargesurfaceareaandasmallthickness.

Nevertheless,athighcurrentdensities,theionicmotion

withinanelectrodeand/oracrossanelectrode/electrolyte

interfaceistooslowforthechargedistributiontoreach

equilibrium,whichiswhythereversiblecapacityde-

creaswithincreasingcurrentdensityinthebattery

andwhythiscapacitylossisrecoveredonreducingthe

rateofchargeand/ordischarge.

electrolyteoverthepracticalambient-temperaturerange

ThehighH

þ

-ionconductivityrequiredofanaqueous

Figure1.Schematicopen-circuitenergydiagramofanaqueouselectro-

lyte.ΦandΦaretheanodeandcathodeworkfunctions.Eisthe

windowoftheelectrolyteforthermodynamicstability.Aμ>LUMO

ACg

and/oraμ

SEIlayer.

HOMOrequiresakineticstabilitybytheformation<ofan

A

C

isonlyfoundinliquidorimmobilized-liquidwater,and

anE

ordertoobtainacellwithahigherVandthereforea

foranaqueouselectrolytelimitsV1.3eV.In

goc

higherenergydensityΛV,itisnecessarytoturntoa

nonaqueouselectrolytewithalargerE.Thisobrva-

oc

oc

tion,inturn,hasledtotheLi-ionbatterysincelithium

saltsaresolubleinsomenonaqueousliquidsandpoly-

g

mers.However,inthisca,theHOMOofthesaltaswell

þ

asthatofthesolventmaydeterminethelimitingμofthe

cathode.

C

determined,itisnecessarytodesignelectrodesofhigh

OncethewindowoftheLi-ionelectrolytehasbeen

þ

capacitythathavetheirμ

andHOMOoftheelectrolyte.ElementalLiwouldbethe

idealanode,buttheε=μofLiliesabovetheLUMO

ofpractical,knownnonaqueouselectrolytes.Therefore,

AC

andμmatchedtotheLUMO

0

FA

uofLi

ingSEIlayerisformed.TheSEIlayerallowsuofLias

0

asananodeisonlypossiblebecauapassivat-

0

ananodeinhalf-cellsudtoobtaintheμorμofa

practicalelectroderelativetotheLi

0

AC

onrepeatedcharge/dischargecycles,breakingoftheSEI

þ0

/Lienergylevel;but

layerinlectedareasresultsintheformationofdendrites

thatcangrowacrosstheelectrolytetoshort-circuitacell

ofthebatterywithdangerousconquences.Therefore,

wemustdesigneither(1)ananodewithaμ

theLUMOoftheelectrolyteaswellasacathodewithaμ

matchedtotheHOMOoftheelectrolyteor(2)astable

passivatingSEIlayerthatlf-healsrapidlywhenbroken

A

matchedto

C

bythechangesinelectrodevolumethatoccurinacharge/

dischargecycle;theSEIlayermustalsopermitafastLi

iontransferbetweentheelectrodeandtheelectrolyte

withoutblockingelectrontransferbetweentheactive

þ

-

particleandthecurrentcollector.

operofarechargeableLibatteryforthepotential

Insummary,theformidablechallengesforthedevel-

massmarketofelectricvehiclesarethree-fold:toidentify

ReviewChem.Mater.,Vol.22,No.3,2010589

Table1.NonaqueousElectrolytesforLi-IonBatteries

ElectrolytesExampleofclassicalelectrolytes

Liquidorganic1MLiPF

1MLiPFEC:DMCin(1:1)101.3>5.0

6

inEC:DEC(1:1)71.34.5Flammable

6

Ionicliquids1MLiTFSIinEMI-TFSI2.01.05.3Non-flammable

1MLiBFinEMI-BF8.00.95.3

44

PolymerLiTFSI-P(EO/MEEGE)0.1<0.04.7Flammable

LiClO

482

-PEOþ10wt%TiO0.02<0.05.0

InorganicsolidLiGePS(x=0.75)2.2<0.0>5.0Non-flammable

0.05LiSiOþ0.57LiSþ0.38SiS1.0<0.0>8.0

4-x1-xx4

4422

InorganicliquidLiAlClþSO70-4.4Non-flammable

42

Liquidorganicþ0.04LiPF

Polymer0.14PAN

6

þ0.2ECþ0.62DMCþ4.2-4.4Flammable

LiClOþECþPCþPVdF3.0-5.0

4

Ionicliquidþ1MLiTFSIþPTFSIþ0.18<0.05.8Lessflammable

PolymerPVdF-HFP

13

IonicliquidþPolymer56wt%LiTFSI-Py

þLiquidorganic30wt%PVdF-HFPþ

14wt%EC/PC

24

TFSIþ1.54.2Lessflammable

Polymer2vol%LiClO-TEC-19þ98vol%0.03<0.0>4.5Non-flammable

þInorganicsolid95(0.6Liþ0.4LiSS)þ5LiSiO

4

2244

IonicliquidþLiquidorganic

19

low-cost,environmentallybenignmaterialsforthekineticstabilityisrequiredbecautheelectrode

threeactivecomponentsofabatterycell,viz.(1)a

nonaqueouselectrolyteofhighLi-ionconductivity

(σ>10S/cm)overthepracticalambient-temperature

3-

þ

range-40<T<60°Cthathasawindowallowing8)Lowtoxicityandlowcost.

Li

athermodynamicallystableVMeetingalltherequirementsprovestobea

oc

g4Vand(2)ananode

and(3)acathodewiththeirμandμvalueswell-formidablechallenge.

matchedtothewindowoftheelectrolyteaswellaseach

allowingafastcharge/dischargecycleoflargereversible

AC

capacity.

Electrolytes

electrolytemustsatisfyveraladditionalrequirements

InadditiontoalargeelectrolytewindowE

suchas:

g

,the

1)Retentionoftheelectrode/electrolyteinterface

duringcyclingwhentheelectrodeparticlesare

2)ALi

changingtheirvolume.

þ-4

-ionconductivityσ>10S/cmoverthe

Li

3)Anelectronicconductivityσ<10S/cm.

temperaturerangeofbatteryoperation.

4)Atransferencenumberσ

includesconductivitiesbyotherionsintheelec-

e

-10

Litotaltotal

/σ1,whereσ

5)Chemicalstabilityoverambienttemperatureranges

trolyteaswellasσþσ.

Lie

6)Chemicalstabilitywithrespecttotheelectrodes,

andtemperaturesinthebatteryunderhighpower.

includingtheabilitytoformrapidlyapassiva-carbonate,thesolventsinclude,inmostcas,ethylene

tingsolid/electrolyte-interface(SEI)layerwherecarbonate(EC)becautheECprovidesapassivating

Ionicconductivity

(Â10s/cm)

-3

þ0

atroomtempRemark

window(V)vsLi

Electrochemical

/Li

ReductionOxidation

376

373

151515

151616

242424

262626

282828

303030

2020

3838

3939

434343

0.81

444444

464646

---Non-flammable

potentialliesoutsidetheelectrolytewindow.

7)Safematerials,i.e.,preferablynonflammableand

nonexplosiveifshort-circuited.

specificallydesignedforaparticularbatteryapplication.

TypesofElectrolytes.Ingeneral,theelectrolyteis

Table1showsveraldifferentmaterialsthathavebeen

udaselectrolytesforLibatteries.

nicliquidsthatarereasonablygoodsolventsforLi

OrganicLiquidElectrolytes.Carbonatesareorga-

salts.

3,4

ca.4.7Vandareductionpotential(LUMO)near1.0

Theyhaveanoxidationpotential(HOMO)at

3,5,6

V.

7þ0

potential.)Moreover,theyhavearelativelylowviscos-

(AllvoltagesinthispaperarereferredtotheLi/Li

ity,whichresultsinalowactivationenergyforLi-ion

diffusion.Therefore,themostcommonlyudelectro-

þ

lytesarecarbonatesorcarbonateblendsconsistingof

oneormoreofthefollowing:propylenecarbonate(PC),

ethylenecarbonate(EC),diethylcarbonate(DEC),

dimethylcarbonate(DMC),orethylmethylcarbonate

(EMC).Inordertobeabletoucarbonastheanode,

whichhasitselectrochemicalpotentialabove(ata

lowervoltageversusLi

þ0

/Li)thatoftheLUMOofa

590Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

solid/electrolyte-interface(SEI)layeronthesurfaceofa

carbonanodethatprotectstheelectrolytesfromfurther

decompositionafterSEIformation.However,carbo-chemicalwindowandadditionallymeettheelectrolyte

nate-badsolventsarehighlyflammablewithflashrequirementsfrom2to7,not1.Forthereasons,

pointsbelow30°C.Inaddition,thepreferredsalt,laboratory-sizeall-solid-stateLi-ionbatterieshavebeen

10

8,9

LiPF,canundergoanautocatalyticdecompositionintoHowever,thefirstoftheadditional

LiFandPF;thePFreactsirreversiblywithanywaterelectrolyterequirementshasexcludedinorganicsolid

prent(PFþHO=PFOþ2HF)and,above60°C,Li-ionelectrolytesfromconsiderationforlarge-scale

6

55

withacarbonateelectrolyte.Thereactionsdegradebatterieshavingsolidelectrodes.Theyhaveonlybeen

523

11

thebatteryandleadtosafetyhazards.However,addi-udinthin-filmbatteryapplications.

tivesudtolowertheoperatingtemperaturehavebeenHybridElectrolyteSystem.Hybridelectrolytesare

showntopreventtheautocatalyticdecompositionofblendsoforganicliquidelectrolytes,ionicliquids,poly-

LiPF

12

6

salt.merelectrolytes,and/orinorganicsolidelectrolytes:

(RTILs)havebeenrecentlyconsideredasalternativeIonicliquidþpolymerelectrolyte(ionicliquidpoly-

IonicLiquids.Room-temperatureionicliquidsPolymerþorganicliquid(polymergel)

13-17

electrolytesforLi-ionbatteriesbecautheyofferveralmergel)

advantagesovercarbonate-badelectrolytes:ahighIonicliquidþpolymerelectrolyteþliquidorganic

oxidationpotential(5.3VvsLi/Li),nonflammabil-electrolyte

ity,alowvaporpressure,betterthermalstability,low

þ043,44

toxicity,highboilingpoints,andahighLi-saltsolubility.

Unfortunately,theyhaveahigherviscosity,whichre-

ducestheirLi-ionconductivity.Ionicliquidsbadon

imidazolium-badcationswouldappeartobethemost

þ

appropriatecandidatesforLibatteriesduetotheirlower

viscosityandahighLi-saltsolubilityatroomtempera-

ture.However,theionicliquidshavepoorstabilityat

voltagesbelow1.1V,

mustbeaddedtointroduceastableSEIlayeronacarbon

18

sothatadditivessuchasECorVC

anode.Analternativeapproachistoincreaσ

addingaliquidcarbonatetoanionicliquid,butata

concentrationthatretainsthenonflammabilityofthe

Li

by

ionicliquid.

increatheoxidationvoltage(lowerHOMOenergy)of

19

Withthisstrategy,itisalsopossibleto

thehybridelectrolytefromthatofthecarbonate.Inspite

ofextensiverearch,noRTILshaveyetbeenintroduced

intolargepowerbatteries.

electrolytebadonLiAlCl

InorganicLiquidElectrolytes.Theinorganicliquid

nandHambitzer

20,21

andSOpropodbyStas-

42

σÂ10S/cmandisnonflammable,=7butitselectro-

lytewindowappearstobetoosmalltobecompetitive.

-2

hasagoodroom-temperature

Li

astheparatoroftheelectrodes,andasolidpolymer

SolidPolymerElectrolytes.Asolidelectrolytecanact

electrolytecanalsoretaincontactoveranelectrode/

electrolyteinterfaceduringmodestchangesoftheelec-

trodevolumewiththestateofchargeofthebattery.

Polyethyleneoxides(PEOs)containingalithiumsalt

(LiPF

LiAsFor)arelow-cost,nontoxic,Li-ion

2422-þ

polymerelectrolyteswithgoodchemicalstability,butthe

66

Li-ionconductivity,σ<10S/cmatroomtempera-

þ-5

ture,istoolowforapower-batterysystem.Theintroduc-

tionofoxideparticles(e.g.,Al

ZrO)createsamoreamorphouspolymermatrix

Li

2322

O,TiO,SiO,or

byinhibitingchaincrystallizationandattractingLi

25-27

2

þ

fromitssalt.TheresultisanenhancedσandLi-ion

transferencenumber,butσ

Li

thatofthecarbonateelectrolytes.

Li

isstillnotcomparableto

conductingmaterialshavingaσ>10S/cmhave

InorganicSolidElectrolytes.InorganicsolidLi-ion

þ

Li

-428-31

beenconsideredforLi-badelectrolytes,ashasbeen

extensivelyreviewed,

32

becautheyhaveawideelectro-

investigated.

33-35

þ

36

41-45

37-40

Ionicliquidþliquidorganicelectrolyte

19

Polymerelectrolyteþinorganicsolidelectrolyte

46-48

gatedinattemptstoexploittheadvantagesofeach

Themixturesoftwoormoreelectrolytesareinvesti-

constituent,butthedisadvantagesofeachalsoappear.

Forexample,theionicconductivityisincreadinthe

polymergelelectrolytes,buttheyarestillflammableand

havetheirreversiblecapacitylossbelow1Vassociated

withformationofapassivationlayer.

40

modynamicstabilityoftheelectrolytevisavistheelec-

Electrode-ElectrolyteCompatibility.Althoughther-

trodesispossiblewheretheμ

withinthewindowoftheelectrolyte,neverthelesschemi-

󰀁

calreactionsbetweentheelectrodeandtheelectrolyte

AC

andμoftheelectrodeslie

mayoccur.Forexample,thereversibleelectrochemical

intercalationofLiintoLi

byuoftheelectrolyteLiClOinPC,buttheelectro-

lyteLiPFinEC/DECallowsfullelectrochemicalcycling

betweenLiVSandVS.

x2

VSwasoriginallyfrustrated

4

49

6

typeofelectrode-electrolytereaction;anelectrodesur-

ThecathodespinelLi[Mn]Oprovidesanother

22

50

1-x24

facedisproportionationreaction2Mn=MnþMn

resultsindissolutionoftheMnfromtheelectrodeinto

theelectrolyte.Thisreaction,unlesssuppresd,gives

2þ

3þ2þ4þ

anirreversiblecapacitylossofthecathodeandmigration

51

oftheMnacrosstheelectrolytetotheanodeduring

chargetoblockLi-ioninrtionintotheanode.The

2þ

þ

resultisanintolerablelimitationofthervicelifeof

thecell.

Inadditiontochemicalstabilityvisavistheelectrodes

󰀁

andhighertemperatures,theelectrolyteshouldnotbe

decompodbyananodeμ

electrolyteLUMOoracathodeμ

theHOMO.However,ifμorμlieoutsidethewindow

oftheelectrolyte,kineticstabilitymaybeachievedby

A

atahigherenergythanthe

atalowerenergythan

C

AC

formationofapassivatingSEIlayeronthesurfaceofthe

electrode,butattheexpenofthelossincapacitytoform

thelayer.Moreover,duringafastcharge,theconcentra-

tionofLi

layer,andwhereachangeinvolumeoftheelectrode

þ

ionsmaybuilduponthesurfaceoftheSEI

ReviewChem.Mater.,Vol.22,No.3,2010591

Figure2.(a)VoltageprofilesversusLi/LiofthedischargecurvesofLiC,LiTiSandLi[Ti]S,LiCoO,andLiCoPO.(b)Schematicoftheir

þ0

x6x2x24x2x4

correspondingenergyvsdensityofstatesshowingtherelativepositionsoftheFermienergyinanitinerantelectronbandforLiC,theTi/Tiredox

x6

4þ3þ

coupleforLiTiSandLi[Ti]S,theCo/CoredoxcoupleforLiCoO,andtheCo/CoredoxcoupleforLiCoPO.

x2x24x2x4

4þ3þ3þ2þ

breakstheSEIlayer,Limaybeplatedoutbeforethe

0

breakishealed.Liplatingcanresultindendritesthat

growacrosstheelectrolyte.Thisproblemcreatesasafety

issuethathashauntedtheuofacarbonanodeinlarge-

scalepowerbatteries.Theproblemsneedtobemana-

gedifsafetystandardsaretobemetwithanyanode,

includingcarbon,thathasitsμ

A

abovetheLUMOofthe

electrolyte.

Acathodeμatalowerenergythantheelectrolyte

C

HOMOmustbedistinguishedfromanintrinsicvoltage

limitofthecathode,asisdiscusdbelow.Aswith

anodes,passivatinglayersoncathodesarebestformed

insitusothatelectroniccontactwiththecathodecurrent

collectorisnotbroken.Preliminarywork

52-54

onpas-

sivatingSEIlayersonoxidecathodeshasfoundthem

tobeunstable.Thisfieldhasyettobeadequately

rearched.

Electrodes

Thedesignofanelectrodeinvolvestailoringoftheμ

A

ofananodeorμofacathodetotheLUMOorHOMO

C

oftheLi-ionelectrolytetobeud;theelectrodemust

þ

alsobechemicallystableintheelectrolyte.Todate,

practicalelectrodeshaveallhadhoststructuresinto/from

whichguestLiatomscanbeinrted/extractedreversibly.

FactorsDeterminingμandμ.Theenergyofagiven

AC

μorμmaycorrespondtotheFermienergyinan

AC

itinerant-electronband,asisthecaforcarbon,orthe

energyofaredoxcoupleofatransition-metalcation.

Tailoringoftheenergyofaredoxcoupledependsnot

onlyontheformalvalencestateofthecation,butalsoon

thecovalentcomponentofitsnearest-neighborbonding,

whichisinfluencedbytheplacementandcharacterofany

countercationsandbytheMadelungenergyoftheionic

componentofthebonding,whichisinfluencedbythe

structure.Inaddition,thepositionofaredoxcouple

relativetothebottomofabroadconductionbandorto

thetopofananionpbandmaydeterminetheintrinsic

voltagelimitversusLi

þ0

/Liofagivenelectrode.This

problemarisforaμwheretheactiveredoxcoupleis

C

“pinned”atthetopoftheanionpbands.Pinningofredox

couplesandtheintrinsicvoltagelimitareconceptsde-

scribedbelow.However,wefirstdemonstrateinFigure2

therangeofvoltagesthatareexhibitedbyhoststructures

592Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

into/fromwhichLiionshavebeeninrtedreversibly.

Carbon,Li

pounds,the[Ti]SspinelhostofLi[Ti]Sisstrongly

bondedin3D,andLiCoPOshowstheinfluenceofthe

TiS,andLiCoOarealllayeredcom-

þ

x2x2

24x24

countercationofthe(PO)polyanionontheCo/

x4

CocouplerelativetotheCo/Cocoupleinthe

2þ4þ3þ

layeredLiCoO(chargesonionsreprentformal

4

3-3þ

valencestates,notactualcharges).Theuppervoltage

x2

limitsinthesulfidesaremuchlowerthanthointhe

oxides.InFigure3,wealsoshowhowtheMn/Mn

morethan1eVwheretheLi

Licoupleof[Mn]Oinaspinelframeworkisshiftedby

4þ3þ

x22

fromoctahedraltotetrahedralsitesas2>x>1

decreasto1>x>0.Theinfluenceofstructureis

þ

ionschangetheirposition

exemplifiedbythecomparisoninFigure4ofthevol-

tagesfromtheFe

PONASICONstructureofLi),theFe(PO,and

3þ2þ

/FecoupleintheolivineLiFe-

somediphosphates.

x

43þx243

packedhexagonalarraywithTioccupyingalternate(001)

HostStructures.ThesulfuratomsofTiSformaclo-

55

planesofoctahedralsites.TheTiSsheetsofedge-

2

sharedoctahedraareheldtogetherbyvanderWaals

forces.Steeleoriginallysuggestedthatintercalationof

6/3

LiintotheemptyoctahedralsitesbetweentheTiS

sheetswouldbereversible,whichmadeTiSapotential

56

6/3

cathodeforarechargeableLibattery.Whittinghamwas

2

thefirsttodemonstratefast,reversibleLiinrtioninto

TiSthesolid-solutionrange0exe1ofLioverTiS.

57

However,attemptstomakeaTiS/Libatteryfailed

2x2

becaudendriteformationontheLianodecaud

2

0

0

explosivefailure.Nevertheless,theearlyexperiments

demonstratedthatcompoundsintowhichLicanbe

inrted/extractedreversiblyarecandidateelectrodes

fortherechargeableLibattery.

relativetotheLi

Thehorizontal,dashedlinesofFigure5aretheenergies

HOMOoftheEC/DECsolventcontainingthemore

þ0

benignLiPFastheLi-ionsalt.Thisfigureshowsthat

/LipotentialoftheLUMOand

þ

theenergyμ

6

notwell-matchedtotheHOMOofthiselectrolyte.Rea-

Cx2

oftheTi/TiredoxcoupleofLiTiSis

4þ3þ

lizationthatTiSthevoltagelimitversusapproachesLi/

2

þ

Li

0

inrtionintolayeredoxides.However,layeredoxides

ofalayeredsulfidesuggestedexplorationofLi

58

areonlyfoundwhereatransition-metalcationformsan

MdObondaswiththevanadylVdOandmolybdyl

ModOcationsofV

hand,LiMOoxidesforminganorderedrock-saltstruc-

253

OandMoO.Ontheother

59,60

turewithLiandtransition-metalMatomsonalternate

2

(111)octahedral-siteplanesinvitedinvestigationof

reversibleLiextraction.RemovalofLifromordered

LiMOallowsoperatingonanM/Mcoupleoflower

58,61

4þ3þ

energythantheTi

2

removalofLileavesametastablecompound,andM

4þ3þ

/TicoupleofTiS.However,

2

cationsstableintetrahedralsiteseithermoveintothe

partiallyoccupiedLilayerortransformthestructureto

spinelonremovalofhalfoftheLi.Moreover,goodorder

oftheLiandMatomsintheinitialLiMO

Nevertheless,removalofhalfoftheLifromwell-ordered

2

isrequired.

LiCoO

2C

ataμ4.0VversusLi/LifortheCo/Co

þ04þ3þ

Figure3.VoltageprofileversusLi/LiofthespinelLiMnO

(2gxg0).TheLiionsareshiftedcooperativelyfromthetetrahedral

totheoctahedralsitesasxincreasthoughx=1.Adaptedfrom

þ

þ0

x24

ref67.

Figure4.PositionsoftheFe/FeredoxcouplesrelativetotheFermi

energyoflithiumindifferentphosphates.Reprintedwithpermissionfrom

3þ2þ

ref55.Copyright1997TheUniversityofTexasatAustin.

coupleprovedstable.Thiscouplehasagoodmatchtothe

HOMOoftheLiPFinEC/DECelectrolyte,butonly

oneLifortwocobaltreprentsareducedcapacity;and

Coistooexpensiveandtoxicforalarge-batterymass

6

market.

intercalationanodetoreplaceLi

Graphitehasalayeredstructurethatemedtoofferan

ugraphitewerefrustratedbyreductionoftheelectro-

0

,butearlyattemptsto

lyteonLiinrtion.AsisshowninFigure5,theμof

carbonlieswellabovetheLUMOofacarbonateelectro-

lyte,whichiswhyidentificationofaLiintercalation

62

A

compoundisnotasufficientconditionforaviable

electrode.Ontheotherhand,incorporationofethylene

carbonate(EC)intothecarbonateelectrolytepromotes

formationofanSEIlayeronthecarbonthatprovidesa

kineticstability.

8

Anirreversiblecapacitylossonthe

ReviewChem.Mater.,Vol.22,No.3,2010593

Figure5.Voltageversuscapacityofveralelectrodematerialsrelativeto

thewindowoftheelectrolyte1MLiPF

6

inEC/DEC(1:1).

initialchargeofthecarbonanodeisassociatedwiththe

formationofathin,amorphousSEIlayeronthe

carbonthatstabilizesreversibleLiinrtion/extraction

onsubquentcharge/dischargecycles,eFigure6,with

areversiblecapacityof370mAh/g.Disorderedcarbon

ratherthangraphiticcarbonprovidesabettercapacity.

WithapassivatedcarbonanodeandLiCoOasthe

cathode,membersoftheSonycorporationlaunchedthe

63

hand-heldwirelessrevolutionwiththeirintroductionof

2

thewirelesstelephone.

64

turesofferstrong3Dbondingaswellasinterstitialspace

Thenextstepwastorecognizethatframeworkstruc-

fortheinrtionofLiions.Forexample,theA[B]X

spinelscontainBcationsinoctahedralsitesandAcations

intetrahedralsitesofaclo-packed-cubicX-atomarray.

þ

24

TheBcationsareorderedtogivea3D-bonded[B]X

frameworkinwhichtheinterstitialspaceisintercon-

nectedbyedge-sharingoctahedralsitesthatsharefaces

24

withthetetrahedralAsites;eFigure7.Murphyand

colleagues

65

rtedLiintothe[Ti]Sspinelframework.Inthissulfide,

removedCufromCu[Ti]Sandthenin-

24

Liionsinitiallyentertheoctahedralsitesoftheinter-

þ

stitialspaceratherthanthetetrahedralsites,sothe

24

voltageversusxprofileofLi

esntiallyidenticaltothatofthelayeredLiTiS.

[Ti]S,0exe1,was

x24

x2

57

IndependentworkatOxfordshowedthatLicanbe

inrtedintotheoxospinels;butinoxidestheLispecies

occupythetetrahedralsitesinLi]O[B.Oninrtion

66

ofLiintoLi[B]O,Coulombinteractionsbetweenthe

LiionsdisplacealltheLiionstotheoctahedralsites.In

þþ

1-x24

24

thespinelLi[Mn]O,thehigh-spinMnionsareJahn-

Tellerions,andcooperativeorbitalorderingforaratio

24

3þ

Mn/Mn>0.5distortsthecubicstructuretotetra-

3þ4þ

gonaltogiveacoexistenceoftwophasratherthana

solidsolutionandthereforeaflatV3.0VforLi-

[MnSubquently,Thackerayetal.showedthaton]O.

removaloftheLifromthetetrahedralsitesofLi

oc1þx

67

24

[Mn]O,theVversusxprofilewasat4.0VversusLi/

LiforthesameMn/Mnredoxcouple.Theobrva-

04þ3þ

1-x

-

2

4oc

þ

tions,summarizedinFigure3,showedthatshiftingtheLi

stepintheMn/Mnredoxcoupleasaresultofthe

fromoctahedraltotetrahedralionssitesproducesa1eV

þ

inductiveeffectoftheLiions.However,italsoshows

4þ3þ

þ

Figure6.(a)Voltagecurvesofgraphitetestedin1MLiClOinPCand1

MLiAsFinPC:EC(1:1)electrolytes.TheelectrolyteisreducedatV0.7

Vin1MLiClOinPC.AnSEIlayerisformedintheEC-badelectrolyte

between0.8and0.4VversusLi/Li,whichallowsfurtherintercalationof

4

6

4

Li

þ

SchematicprentationoftheformationoftheSEIlayerbydecomposi-

ionsafteraninitialcapacityloss.Adaptedfromrefs62and8.(b)

þ0

tionofEC-badelectrolytes.Adaptedfromref9.

Figure7.TwoquadrantsofthecubicspinelA[B]Xshowing

theoccupiedtetrahedralsites(8a),occupiedoctahedralsites(16d),

andunoccupiedoctahedralsites(16c).TheLispeciesofLi

occupy8atetrahedralsites,andthoofLi[B]Ooccupyonly

24

1-x24

unoccupiedoctahedralsites(16c).TheLispeciesofLi

onlyunoccupiedoctahedralsites(16c)forallxof0exe2.Adapted

[B]O

1þx24

fromref77.

x24

[Ti]Soccupy

thatuoftheoxospinelslimitstheoperativecapacity

tooneLipertwoB-sitecationsasinlayeredLiCoO

AlthoughMnischeaperandenvironmentallymore

2

.

594Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

benignthanCo,ithasprovennecessarytosubstitutesome)

LiandNiforMntosuppressLiorderatLipolyanionforoxygenopensthehostframework.More-

0.524

[Mn]Oand

dissolutionofMntotheelectrolyteonrepeatedcharge/over,theobrvationofa0.6VincreaintheVfrom

dischargecycling;theresultingfurtherlossofcapacityisLiFe(MoO)toLiFe(SO),eachoperatingon

onlypartiallyregainedbytheabilitytoreplacesometheFe/Fecouple,demonstratedthatsignificanttun-

oxygenwithfluorine.

68,69

Another3DframeworkistheM(XO)structureofthroughtheinductiveeffectbychangingthecounter-

243

hexagonalFe(SO),whichconsistsofclustersoftwocationinthepolyanion.Withthisframework,itwas

243

MOoctahedrabridgedbythreecorner-sharing(XO)

64

tetrahedra;theoctahedraoftheclusterssharecorners

withthetetrahedraofneighboringclusterstocreatean)with(SO).

open3Dhoststructurecapableofacceptingupto5Li

atomsperformulaunitintoitsinterstitialspace;e

Figure8.ThisframeworkisreferredtoastheNASICON

structuresinceNa

1þ3x21-xx43x4

Zr(PSiO)wasshowntoLiforLiFePO,0exe1,asaresultofasmall

700

supportfastNa-ionconduction,i.e.tobeaNA-ion

þ

SuperiorIonicCONductor.Substitutionofan(XO

4

71

oc

3þx2433þx243

3þ2þ

ingoftheenergyofaredoxcouplecanalsobeachieved

possibletodeterminetherelativeenergiesofveralredox

couplesinanoxide,Figure9,andhowtheshifttogether

onreplacing(PO

44

72,73

Thisexplorationledtoidentificationoftheolivine

74

framework,Figure10,ofFePOinwhichinrtionofLi

4

intoits1DchannelsgivesaflatV=3.45VversusLi/

oc

þ

Figure8.NASICONframeworkofLiM(XO)thatisbuiltwithMO

x2436

octahedralinkedbycornerstoXOtetrahedraandviceversa.AdaptedFigure10.OlivinestructureofLiFePOshowingLiin1Dchannels.

44

fromref70.Adaptedfromref74.

Figure9.(a)PositionsoftheFe/FeredoxcouplesrelativetotheFermienergyoflithiumintheNASICONstructurewithdifferentpolyanion

3þ2þ

countercations.Adaptedfromref55.(b)PositionsofsomeM/MredoxcouplesinLiM(PO).Adaptedfromref73.

nnþ1

x243

ReviewChem.Mater.,Vol.22,No.3,2010595

displacivestructuralchangeoftheframeworkbetweenorbitalsretainadorbitalsymmetryandbehaveas

LiFePOaredoxcouple.However,asthepercentageofanion

44

andFePO.Despitethetwo-phacharacterfor

0<x<1,whichresultsinapoorelectronicconductivity,pcharacterincreasastheredoxcouplefallsfurther

andthe1DchannelsfortheLimotion,smallparticlesofbelowthetopoftheanionpbandsorwithincreasing

carbon-coatedC-LiFePOresultinsafecathodeswithoxidationbeyondacriticalvalue,theantibondingchar-

x4

reversiblecapacitiesthatdonotfadesignificantlyon

cyclingthousandsoftimes.However,theVisnot

oc

optimalfortheLiPFintheEC/DECelectrolyte.Never-

6

theless,acellvoltageV3Vcanbeobtainedwith)or(O).

oc22

LiFePOasacathodeandacarbonanode,whichisTheCo/CoandNi/Niredoxcouplesinthe

4

excellentformanyapplications.However,toensurelayeredoxidesLiCoOandLiNiOarepinnedat

safetyforlarge-scalepowerapplications,itwouldbethetopoftheO2pbands.ThesystemLi

preferabletohaveananodewithaμ

Aoc

1.3VversusflatV4.0VversusLi/Lifor0<xe0.5becau

Li/LiifLiPFinEC/DECisudastheelectrolyte.thereisacoexistenceofapolaronic,high-spinCoina

þ04þ

6

SuchananodewithaLiFePOcathodewould,however,low-xphaandanitinerant-electron,low-spinCo/

4

onlygiveacellV2V,whichmightnotbecompetitiveCophanearx=0.5.Forx>0.5,peroxideforma-

oc

withanickel/metal-hydridebatteryhavinganaqueoustionatthesurfaceleadstoalossofObythesurface

electrolyte.reaction

Johnston

75

hadshownthatthespinelLi[Ti]Oisa

24

superconductorandthesystemLi[LiTi]O,0exe

x2-x4

1/3,hadbeenwell-characterized,buttheidentifica-

76,77

tionofLi[LiTi]Oasapotentialanodewitha

1þx0.331.674

flatV=1.5VversusLi/LiwasfirstmadebyFerget

oc

þ0

al.AlthoughLiTiOreprentsathermodynamically

78

4512

stableanodehavingnopassivationlayer,ithasonlya

modestcapacityanditsuasananoderequiresidenti-

ficationofacathodewithabettermatchtotheHOMO

oftheelectrolytethanLiFePO.

4

IntrinsicVoltageLimits.Pinningofaredoxcoupleat

thetopofananionpbandprovidesanintrinsicvoltage

limitforacathode.Pinningoccurswhere,asisillustrated

79

inFigure11,theenergyofaredoxcouplecrossthetopof

theanionpbands.Atthiscrossover,theelectronicstates

ofadredoxcouplechangefromprimarilycationd,i.e.

n

(dþp),toprimarilyanionp,i.e.(pþd)character,and

nn

wherethecouplehasaprimarilyanionpcharacter,the

cationwillappeartobeinalowervalencestate,dafter

nþ1

oxidationofthecouple.Nevertheless,theantibonding

(pþd)

n

acterofthestatesatthetopoftheanionpbandsfadesand

holesoccupybondinganionpstates;forlargerconcentra-

tionsofpurelyanionpholes,theholesbecometrappedin

dianionantibondingstates,e.g.(S

2-2-

4þ3þ4þ3þ

1-x21-x2

1-x2

CoOshowsa

þ0

804þ

3þ

2

2ðOÞ¼2OþO

22

2-

2-

vð2Þ

AV4.0VistheintrinsicuppervoltagelimitforLi-

oc1-x

CoO

2

.Decompositionofthecompoundoccursathigher

voltages.

Thelow-spinCoCo:π*σ*redoxcoupleof

x1-x

4þ3þ

6-x0

Li

1-x2

CoOcontainsholesintheantibonding,itinerantπ*

orbitalsoftorbitalparentage;thelow-spinNiNi:

x1-x

4þ3þ

tσ*coupleofLiNiOcontainselectronsinthe

61-x

1-x2

antibondingσ*orbitalsofeorbitalparentage,andfor

x>0.6inLi

1-x2

NiO,holesbecometrappedinperoxide

ions.Theinitialvoltagewiththeσ*orbitalsisalittlelower,

atV3.8VinlayeredLiNiO,whichiswhyagreater

1-x2

concentrationofNivalenceisfoundbeforeOevolution

4þ

2

thanwithCoinLiCoO.Itisthecubicligand-field

4þ

1-x2

splittingoftheoctahedral-site3dorbitalsthatraisthe

Ni

4þ3þ4þ3þ

/Nicoupleabovethatofthelow-spinCo/Co

couple.SubstitutionofhalfoftheNibyMninLi-

(NiMn)OgivestheformalvalencestatesNiand

0.50.52

2þ

Mn.TheMn/Mncouplelieswell-belowthetopof

4þ5þ4þ

Figure11.Schematicreprentationofaslightlyoxidizedredoxcouplefordifferentpositionsrelativetothetopoftheanionpbands.(a)Itinerantversus

polaroniccharacterofholestatesofacoupleontheapproachtothetopoftheanionpband,(b)pinnedcouplewithpredominantlyantibonding(a.b.)anion

pholestatesandpredominantlycationdbonding(b.)states,and(c)coupletoofarbelowtopofanionpbandforsignificantcationdcharacterinholestates.

Reprintedwithpermissionfromref79.Copyright2009Elvier.

596Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

Figure12.(a)VoltageprofileforthedischargeandchargecurvesonLiintercalationintoLiTiS,LiVS,andLiCrStestedinthe1MLiPFinEC:

0.820.8226

DEC(1:1)electrolyte.(b)Correspondingpositionsofthebottomofthe4sband,thetopoftheS3pband,theM

3þ2þ4þ3þ

/M,andtheM/Mredoxcouples

relativetotheFermienergyoflithium.Adaptedfromref82.

theO2pbands,buttheNi/NicoupleispinnedattheþLiSat0.85V.Thecrystal-field

3þ2þ0

topoftheO2pbands.InLi(NiMn)O,theholessplittingofthe3dorbitalsliftstheσ-bondingeorbitals

1-x0.50.52

occupyaσ*bandofeofhigh-spinCr

2-2x62-2x2þ31

parentageattheNi:tσ*,so:teabovethebottomofthe4sband

thereisnostepintheFermienergyEonpassingfromtheinLiCrSeventhoughCrShasbeenobtainedchemically

F2

Ni/NitotheNi/Nicouple.Moreover,theMn-NibyJellinek.SinceoverlapoftheS3porbitalswith

3þ2þ4þ3þ83

interactionraistheNitheCr4sislargerthanwiththeCr3dorbitals,the

4þ3þ

/Niredoxcouplerelativetothe

topoftheO2pbandstogiveaccesstotheentireNi/NicovalentcomponentoftheCr-Sbondliftsthebottom

4þ3þ

couple.Nevertheless,σ*orbitalsof(eþp)parentageofthe4sbandofCrSabovetheenergyofthe3d

2-2x4

changeto(pþe)

2-2x2þ

parentageasxincreas.configurationtoallowaccesstotheCrvalencestate.

ThelimitinglowervoltageofananodeoccurswhereaInLiCrS,thesulfuratomsbondtoCrononeside

redoxcouplecrossthebottomofthebroadcationandtoLiontheother.Moreover,theLispeciesare

conductionband;e.g.the4sbandforthefirst-rowforcedintotetrahedralsitesinLiCrS,andfailureto

transition-metalatoms.Thissituationisillustratedby

LiinrtionintothelayeredLiMS

2

sheetstocreateaofthetetrahedral-siteLi-Sbondisreducingthecova-

coexistenceofLiMSandLiMSphasandthereforealentcomponentintheCr-Sbondtoleavethebottom

222

flatVversusxprofile.ThebottomoftheM4sbandofoftheCr4sbandbelowthe3d

themonosulfidesMSlowersprogressivelyastheMatomtionillustrateshowthebondingofacountercationcan,

nuclearchargeincreasfromM=TitoM=Ni.Inthroughtheinductiveeffect,changetheintrinsiclimit-

81

LiTiSinglowervoltageassociatedwithatransition-metal

22

andLiVS,thebottomofthe4sbandisatca.0.15

eVbelowtheLi/LiFermienergy;itisonlyalittlelower

þ0

at0.85eVinLiCrS.AsisevidentinFigure12,anSEI

2

82

layerwasformedrapidlyonLiMS(M=Ti,V)in

0.8þx2

thevoltagerange0.5<V<0.9VversusLi

þ0

/Lionthe

firstdischarge;theTi/TiandV/Vcouplesgave,

3þ2þ3þ2þ

respectively,aV0.5and1.0VversusLi/Li.

þ0

However,inrtionofLiintoLiCrSyielded,inaddition

2

totheSEIlayer,Cr

2

1þx2

22

accessCrimpliesthatastrongcovalentcomponent

2þ

4

energy.Thisobrva-

cation.

EffectofCationSubstitutions.Acountercationcan,

throughtheinductiveeffect,notonlychangeanintrin-

siclimitingvoltageassociatedwithatransition-metal

cationbutalsobeudtotunetheenergyofanoperative

redoxcouple.Thistuningphenomenonisillustratedin

Figure5bycomparisonofthevoltagesassociatedwith

ReviewChem.Mater.,Vol.22,No.3,2010597

Figure13.VoltageprofilesofLi[NiMnTi]O:(a)y=0,(b)y=0.3,(c)y=0.5,and(d)y=1.Thecapacitydecreasandthevoltageincreas

1-x0.51.5-yy4

withhigherTicontent.Adaptedfromref84.

theTi/TicouplesintheNASICONframeworkof

4þ3þ

LiTi(PO)andthespinelLiTiO.Achangefrom/NicoupleofLiNiO

1þx24345122

2.5to1.5Vshowsthatthecountercationcanhavea

profoundeffectonaredoxenergythroughtheinductiveof4.8VversusLi/LiforextractionofLifromthe

effect.Moreover,comparisonoftheNi/NiredoxtetrahedralsitesofthespinelifthetopoftheO2pband

4þ3þ

energyinlayeredLiNiOandthepinnedNi

2

whereincompleteaccessis/Nicouplearebothstabilizedby

foundat3.8VwiththatinthespinelLi[NiMn]OtheshiftoftheLiionsfromoctahedraltotetrahedral

1-x0.51.54

wherecompleteaccessisfoundat4.75V,eFigure13a,sites.AlthoughtheprenceoftheMnionsraisthe

showsthatcovalentbondingwiththecountercationcanNi/NiredoxenergyrelativetothetopoftheO2p

alsoincreatheintrinsiclimitingvoltageofacathodeby

loweringthetopoftheO2pbands.Wenowinquireabout

theeffectofcationsubstitutionfortheactivecationonaccesd.Inthespinel,thelimitationistheHOMOof

theintrinsiclimitingvoltagewheretheparent-cationtheelectrolyte;itisnottheintrinsicvoltagelimitofthe

redoxenergyispinnedatthetopofananionpband.cathode.

Forthispurpo,wecomparetheinfluenceofMn

4þ

versusTisubstitutionsontheenergiesoftheNi/

4þ3þ

NiandNi/Nicouplesinlayeredandspineloxides.

2þ4þ3þ

ComparisonwiththeinfluenceofCrsubstitutionsfor

3þ

vanadiuminthelayeredLiVCrSsulfidesisalsoin-

1-yy2

structive.

RemovalofLifromthetetrahedralsitesofthespinel

Li[NiMn]OinitiallyprobestheNi/Niand

1-x0.51.54

3þ2þ

thentheNi

4þ3þ

/Niredoxcouplespinnedatthetopofthe

O2pbands.Figure13ashowsthatthevoltageincreas

graduallywithxfromabout4.74to4.77Vinthefirst

chargecurve.Theirreversiblecapacitylossinthefirst

cyclecorrespondstotheformationofanSEIlayerbythe

oxidationoftheelectrolyte.Theirreversiblecapacityloss

oneachcycleisnotcharacteristicofformationofastable

SEIlayer;itreprentsoxidationoftheelectrolyteandan

unstableSEIlayer.SincetheNi

4þ3þ

givesaninitialvoltageof3.8V,wemayexpectavoltage

þ0

4þ3þ

þ

4þ

4þ3þ

bands,thevoltageexceedstheHOMOoftheelectrolyte

atabout4.75VbeforethefullNi/Nicoupleis

4þ3þ

Figures13b-dshowwhathappenstothevoltage

profileasMnisreplacedbyTiinLi[NiMnTi]O.

0.51.5-yy4

84

Theoctahedral-siteMn/Mncoupleappearstobe

5þ4þ

cloenoughtothetopoftheO2pbandstobenearly

pinned;theMnionisstableintetrahedralsiteswith

5þ

abasiccountercation.InteractionbetweentheMn/

5þ

MnandNi/Nipinnedcouplesallowsaccessto

4þ4þ3þ

antibondingstatesatthetopoftheO2pbandscorre-

spondingtoaformalNi

4þ3þ

/Nicouple.Missingthis

interaction,theNi/NiandNi/Niredoxcouples

4þ3þ3þ2þ

fallbelowthetopoftheO2pband.Asaresult,thevoltage

increaswithincreasingTicontentinLi[Ni

0.51.5-y

Mn-

Ti]O.However,theirreversiblecapacitylossisbigger

y4

withincreasingTicontentandathigherTicontent(yg

1.0)inrtionofLidoesnotpermitaccesstoeventhe

598Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

Ni/Niredoxcouple;thereappearsalargeirrever-SinceonlyoneLicanberemovedfromalayeredoxide

3þ2þ

siblecurveat4.9Vaty=1.0.Thisisduetothefactthat

thetwonickelredoxcouplesfallfurtherbelowthetop

oftheO2pbandswithincreasingTicontentinLi[Ni-

0.5

MnTi]O.Hence,theirreversibleflatcurveat4.9V

1.5-yy4

correspondstotheirreversibleaccesstothetopoftheO2p

bands,whichindicatestheintrinsicvoltagelimitofthespinel

oxides.However,thiscanbeconfudwiththeoxidation

potentialoftheelectrolytes;itisestimatedaround4.75V.

Figure14comparesthevoltageprofilesofthelayered

oxidesLi(NiMn)OandLi(NiTi)O.

1-x0.50.520.9-x0.450.552

85

86

Intheexamples,thevoltagesarewellbelowthe4.75V

oftheHOMOoftheelectrolyte.TheMnraisthe

4þ

energiesofthetwonickelcouplesrelativetothetopof

theO2pbands,sotheNi

4þ

valencestateisaccesd

reversibly.Ontheotherhand,theTiapparentlylowers

4þ

theNi/NicouplerelativetothetopoftheO2pbands

3þ2þ

sufficientlytolimittheintrinsicvoltageofthelayered

oxidetounder4.0V.EventheNi

3þ2þ

/Nicoupleisnot

completelyaccesdintheprenceofTi.

4þ

Figure15comparesthevoltageprofilesoflayered

oxidesinitiallycontainingNi

2þ4þ

intheprenceofMn

withlayeredsulfidesinitiallycontainingVinthepre-

3þ

nceofCr.Intheoxides,theNi/NiandNi/Ni

3þ3þ2þ4þ3þ

couplesarepinnedatthetopoftheO2pbands;inthe

sulfides,theV/VandV/Vcouplesarepinnedat

4þ3þ5þ4þ

thetopoftheS3pbands.Pinningoftheredoxcouplesof

nickelgivesaninitialV3.7VforLi(NiMn)O,

1-x0.50.52

whichissimilartothe3.8VfoundfortheNi/Ni

614þ3þ

coupleofLiNiO.Thereisnostepinthevoltage

1-x2

profileatx=0.5wheretheFermienergyfallsfromthe

Ni

3þ2þ4þ3þ

/NitotheNi/Nicouple.Thislackofastepisa

resultofthepinningofthecouplesandtheitinerant

characteroftheholes.Itistobecontrastedwiththesteps

found,forexample,intheNASICONstructure,asis

87

illustratedinFigure16.Finally,asalreadynoted,the

NivalencestateisaccesdwithouttheevolutionofO

4þ

2

becauoftheprenceofMn.Similarly,Li-

4þ

1-x

(V

0.5

Cr)Sshowsareversiblecharge/dischargeprofile

0.52

thatvariessmoothlythroughx=0.5becautheV/

4þ

VandV/Vcouplesarebothpinnedatthetopofthe

3þ5þ4þ

S3pbands.

79

andthenickelredoxcouplesarebothaccessibleinthe

prenceofMn

4þ

,itwaslogicaltoinvestigatetheoxides

Li(NiMnLi)Othataremoreeasily

0.25-y0.75-zyþz2

88,89

preparedwiththeLiwell-orderedintotheLilayers.Lu

andDahnextractedLifromnominalLi(Ni-

88

1-x0.25

Li

0.1670.5832

Mn)Otoobtainthevoltageprofileofthe

condpanelofFigure15;wecompareitwiththatfor

Li

1-x0.250.752

(VCr)S.Atx=0.5,theNivalenceis

4þ

reachedintheoxide,theV

5þ

valenceisreachedinthe

sulfide.Ineach,thevoltageprofileisflatfor0.5<x<1

wheretheFermienergyfallsbelowthepinnedredox

coupleofantibondingstatesatthetopoftheanionp

bands;eFigure17.AflatV=4.5VplacestheFermi

energyabovetheHOMOoftheelectrolyte,whichwe

estimatedtobeatV4.75V.Thisobrvationmeans

thattheflatvoltageprofilesignalsthevoltagelimithas

beenreached,i.e.anE

F

intheO2pband,ratherthanan

oxidationoftheelectrolyte.Thissituationmustsurelybe

thecainthesulfide.Attheintrinsicvoltagelimit,a

condphaappearsintheelectrode.Oncethecond

phahasbeengregatedintheoxideontheinitial

charge,theelectrodecycleswithareducedcapacityin

themajoritypha.Inthesulfide,formationofthe

condphaappearstobemorereversibleasifinitially

disulfideionsarecreatedonthesurfacebeforegrega-

tionofLi

223

SþCrS.Similarly,someperoxideionsmay

formreversiblyontheoxidebeforegregationofLi

2

O

andMnO.

2

ThethirdpanelofFigure15showsthatonfurther

decreaoftheNiconcentrationandincreaoftheMn

concentrationinnominalLi

1-x0.170.220.612

(NiLiMn)O,

theontoftheflatV=4.5isintroducedatasmallerx

withasubquentreversiblecapacitysimilartothatof

Li(NiLiMn)OwhereasLi(VCr)S

1-x0.250.1670.58321-x0.10.92

exhibitsaninitialcapacityfadethatbecomesreversible

withareducedcapacityafterveralcycles.Theob-

rvationsareconsistentwiththecoexistenceoftwo

phasintheelectrodewherethevoltagebecomesflat

withareversiblecyclingoncethecondphaisgre-

gatedout.

ReviewChem.Mater.,Vol.22,No.3,2010599

Indeed,Thackerayetal.havearguedthattheattempt

90

tointroduceexcessLihomogeneouslyintothetransition-

metallayersdoesnotoccur;butacoexistenceofLi-

2

MnO

30.330.672

=Li(LiMn)Olayersisinterleavedwithelectrode-electrolytereactiononcyclingthickensthe

Li(NiMn)OlayerswiththetransformationSEIlayer,andprogressivefadingofthereversiblecapa-

0.5-y0.5þy2

Li

2322

MnO¼LiOþMnOð3Þ

occurringatV=4.5V.ontoftheoxidationreactionhasgivenareported

CathodeSEILayers.Extensiverearchhasbeende-HOMOoftheelectrolyteLiPFinEC/DEClocatedat

votedtocharacterizationoftheSEIlayerformedon4.5(0.2eVversusLi/Li.Thisambiguitymaybe

lithiumandoncarbonanodesbyreductionoftheelec-enhancedbyadependenceoftheoxidationvoltageon

trolyteLiPF

6

inEC/DEC;thisamorphousLi-electro-theSEIproduct,whichcanvaryfromoneelectrode

8,63

lytelayeriscomplex,andtherateatwhichitishealedmaterialtoanother.However,confusionbetweenthe

afteritisbrokenbychangesintheelectrodevolumeonintrinsicvoltagelimitofanelectrodeandtheHOMO

chargeanddischargeisdifficulttomeasureaccurately.voltagemayalsocontributetothisambiguity.

PreliminaryworkontheSEIlayersformedonoxide

52,53

cathodesbyanoxidativereactionoftheelectrodewiththe

carbonateelectrolyteindicatesthattheSEIlayersare

generallyunstable;theelectrolyteisnotprotectedfrom

furtheroxidationonsubquentcycling.Acontinued

cityofthecathodeisrelatedtothethickeningoftheSEI

layer.Moreover,ambiguityinthemeasurementofthe

6

þ0

AttemptstocreateastableSEIpassivationlayeronan

oxidecathodehaveudtwoapproaches:oneeksto

600Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

identifyanadditivetotheelectrolytesuchastheEC

91

componentforthecarbonanode;theotherattemptstowouldprovideaV>4.8VversusLi

coatthecathodeparticleswithamain-groupoxidethatislyteLiPFinEC/DEC.

permeabletoLiions.TheformerapproachformstheCapacity.Theenergydensityofthecellofarecharge-

þ92

SEIlayerinsituaftertheelectrodeparticleshavemadeablebatteryistheproductofthevoltageVandthe

contactwiththecarbonoftheparticle/carboncompositecapacityΛofreversiblechargetransferperunitweight

electrode,sotheSEIlayerformeddoesnotinterferewith

electroniccontactbetweenparticlesandthecurrentcol-

lector.Thecondapproachhasobtainedsomeimprove-paratelyversusLi

mentincyclability,butcompletecoverageoftheactive

particleswithapassivationlayerbeforefabricatingthe

particle/carboncompositeelectrodewouldemtoin-

hibitelectroniccontactwiththecurrentcollector.Howto

coatthecathode/electrolyteinterfacewithastableSEI

layerwhileretainingelectroniccontactwiththecurrentmetaloxideorsulfidehostmaybealayeredcompoundor

Figure16.VoltagestepsintheNASICONstructureofLiFeV(PO).

343

PlateauAofthefirstdischargecorrespondstotheFe/Feredox

3þ2þ

coupleat2.8V;plateauBtotheV

3þ2þ

/Vredoxcoupleat1.7V;plateauC

intheconddischargetotheV

4þ3þ

/Vredoxcoupleat3.7V.Adapted

fromref87.

collectorisacontinuingchallengeforcathodesthat

þ0

/Liintheelectro-

6

inamphourspergrambetweentheanodeandthe

cathode.Thecapacityofeachelectrodemaybemeasured

þ00

/Liinahalf-callwithLiasthe

anode.Threetypesofreversibleelectrodereactionshave

beenconsidered:(1)Liinrtionintoatransition-metal

oxideorsulfidehost,(2)Liinrtionintoelements,and

(3)Lidisplacementreactions.

Transition-MetalOxideorSulfideHosts.Atransition-

aframeworkstructurewith1D,2D,or3Dinterconnected

interstitialspacefortheguestLiatoms.Severalexamples

havebeendiscusdabove.Thevoltagegivenbythehost

electrodewasentobetheenergyoftheoperative

transition-metalredoxcouple.Aflatvoltageprofile

versusLiconcentrationispreferred;itisfoundwhere

twophascoexistratherthanwherethereisasolid

solutionbetweenthechargedanddischargedhost.With

thisstrategy,thecapacityisgenerallyrestrictedtono

morethanoneLipertransition-metalatom;butwhere

theredoxcoupleofatransition-metalatomispinnedat

thetopofananionpband,tworedoxcouplesperthat

transition-metalionmaybeaccesd.Thissituationwas

illustratedbytheNiinLi

1-x0.50.52

(NiMn)OandbyVin

Li(VCr)S.However,astheexamplesillustrate,

1-x0.50.52

itisnotpossibletotakeadvantageofthisaccessibility

unlessthehostcanaccommodatemorethanoneLiper

transition-metalatomwithoutavoltagestep.Framework

structureswithalargeinterstitialspaceareneededto

obtainacapacityofmorethanoneLipertransition-metal

Figure17.(a)PositionsoftheM/MredoxcouplesrelativetotheFermienergyoflithiumin(a)Li(VCr)Sand(b)Li(NiLiMn)O;

nþ1n

0.50.250.7520.50.250.170.682

2.8eVinthelayeredsulfideand4.5eVinthelayeredoxidecorrespondtotheflatcurvesintheirvoltageprofilesinFigure15.

ReviewChem.Mater.,Vol.22,No.3,2010601

Figure18.(a)Structuralunitsand(b)projectioninthea-bplaneforAgTi(PS).(c)DischargeandchargecurvesforAgTi(PS)overfivecyclesat(a)

243243

1.5-3.5Vat0.1mA/cm

2

.Reprintedwithpermissionfromrefs93(Copyright2008AmericanChemicalSociety)and94(Copyright2008Elvier).

atom,butsuchframeworkstendtobeunstableifthelargeponentandVCadditiveofaDECorDMCelectrolyte

cationsthattheyformaroundarereplacedbysmallercreatesapassivatingSEIlayeroncarbonthatishealed

Liions.Ontheotherhand,theNASICONM(XO)quicklywhencrackedbythevolumeexpansionofthe

þ

243

frameworkiscapableofreceivingreversiblyupto5LicarbonmassonLiinrtion.Nevertheless,therateofLi-

atomsandtheMiontransferacrosstheSEIlayerand/ortherateofhealing

243243

(PS)frameworkofAgTi(PS)illus-

tratedinFigure18hasbeenshowntoaccommodateoftheSEIlayerlimitsthesaferateofrechargingofa

93,94

upto10Liatoms;but,reductionofthePSgroupsaswellcarbonanode.Safetyconcernsassociatedwithplatingof

4

astheTitoTidestabilizestheframework.Moreover,Lionthesurfaceoftheanodeandsubquentdendrite

4þ0

thehostmustbestableintheelectrolyte;LiV(PS)

243

dissolvesintheelectrolyteLiPFinEC/DEC.

6

ElementHosts.Anyelementashostintendedforuas

ananodegivesavoltagelessthanthevoltageofthe

LUMOofacarbonateelectrolyte.Therefore,apassivat-

ingSEIlayermustprotectsuchananodeagainstchemical

reactionwiththeelectrolyte.Themostsuccessfulelemen-

talhostiscarbon.Graphitehasalayeredstructurewith

threestrongbondsinthegraphiteplanesandhalf-filledp

z

orbitalsperpendiculartotheplanesthatcaninteractwithtionofanSEIlayerthatdoesnotprotectagainstinter-

theLi2sorbitals.Thisbondingarrangementlimitstheactionwiththeelectrolyte.Similarproblemsareencoun-

volumeexpansiononLiinrtion,butalsothenumberof

Liatomsthatcanbeaccommodated.AlthoughgraphiteDisplacementReactions.Displacementofanelement

canonlyacceptoneLipersixCatoms,thecapacityisstillfromacompoundoranalloycanbereversible,

large,thevolumeexpansionismanageable,anditsvol-

tagechangeslittlewiththeLicontent.Thesituationis

similarwithdisorderedcarbon.Moreover,theECcom-

þ

formationrequireadesignoflarge-scalepowerbatteries

usingcarbonanodesthatprotectsagainstfailureofan

individualcell.

MoreLicanbeinrtedintoSithanintoC,which

makesitpotentiallyananodeofexceptionallyhigh

capacity,butavolumeexpansionofover300%onfull

chargeisnotmanageable.Althoughthefabrication

ofnanowireshasbeentoutedasasolutiontothis

problem,

95,96

thisanodesuffersfromcontinuingforma-

teredwithLireplacementsforHinmetalhydrides.

97,98

aswas

firstdemonstratedwiththedisplacementofironfrom

FeOoninrtionofmorethanoneLiperformula

34

unit.

99

Exploitationofthisphenomenonpromidalarge

602Chem.Mater.,Vol.22,No.3,2010GoodenoughandKim

capacitysinceadisplacementmayinvolvereducing

thedisplacedatombymorethanoneelectron.

Thereactionsareofparticularinterestforanodeswith

main-groupatoms;theyoffervoltageslessthanthe

100,101

voltageoftheLUMOofacarbonateelectrolyte.How-abovetheLUMOoftheelectrolyte,

ever,thisstrategysuffersfromlargevolumechangesina

charge/dischargecycleandtheneedforastablepassivat-

inglayerthatcanhealmorequicklythanreactionwiththe

bulkelectrolyteortheexcessLiaccessiblewithoutexceedingtheintrinsicvoltagelimitof

approachisonlypromisingiftheLUMOoftheelectro-

lytecanberaidabovetheμoftheanode.Nevertheless,

þ

ionsatthesurface.This

amorphousSiordisplacementreactionsthatarebuffered

withgraphitecanimprovethecapacityofacarbonanode.

A

Summary

batteriesforelectricvehiclesarecost,safety,cellenergy

Theprincipalchallengesfacingthedevelopmentof

density(voltageÂcapacity),rateofcharge/discharge,

andrvicelife.Automationofmanufacturing,material

lection,andrvicelifearethekeystolowercosts;the

availabilityofLineednotbeaproblem.Longrvicelife

requireseliminationofunwantedchemicalreactions

betweentheelectrodesandtheelectrolyteaswellas

retentionovermanycharge/dischargecyclesoftheelec-

troniccontactbetweentheactiveparticlesofanelectrode

andthecurrentcollector.Thelatterrequirementrestricts

thevolumechangeversusstateofchargethatcanbe

toleratedinanelectrodeunlesstheactiveelectrodepar-

ticlesaretetheredtoacurrentcollector.Thisattachment

maybemadedirectlybythegrowthofnanowiresofactive

materialonacurrent-collectorsubstrate;itmayalsobe

donebybondingtheactiveparticlestoaconductive

polymerhavingaconductionbandthatoverlapstheμ

orμoftheelectrode.Theformerrateisbeingrearched

withSinanowires,thelatterhasbeenaccomplishedwith

A

C

polypyrrolebondedtocarbon-coatedLiFePO

95

therateofchargeand/ordischarge,andtheengineering

ofthebatterypack.Ahybridionicliquidandorganic

isrelatedtotheflammabilityoftheelectrolyte,Safety

4

.

102,103

liquidastheelectrolytesolventcanbemadenonflam-

mablewithouttoogreatacompromioftheelectrolyte

σ.BoththeLiFePOcathodeandtheLiTiOanode

havedemonstratedsafeandrapidchargeanddischarge

Li44512

overmanycycleswheretheμandμ,respectively,are

locatedwithinthewindowoftheelectrolyte,which

CA

removestherequirementofapassivatinglayer.However,

locationoftheμμandwithintheelectrolytewindowis

notsufficientiftheelectrodeisoperatingatitsvoltage

limitwitharedoxcouplepinnedtothetopofananionp

CA

bandoroverlappingacation4sband.Anelectrolytewith

alargerwindow,especiallyonewithahigherLUMO,

wouldbehelpful;butECand/orVCintheelectrolyte

solventdoallowuofacarbonanodewithalimited

chargingrate.Finally,engineeringthebattery-pack

designtoallowfailureofonecellwithoutcompromising

theentirestackcanalsobuildinsafety.

andlargercapacity.Toachieveagreaterenergydensity

Agreaterenergydensityrequiresbothalargervoltage

withinexpensiveelectrodeshavingalongrvicelifeisa

challengeforthematerialsscientist.Ontheanodeside,it

willbedifficulttohaveabettercapacitythanthatof

carbon,andthepassivationlayermakesitpossibletotake

advantageofaμ

albeitattheexpenofareducedchargingrate.Onthe

cathodeside,amaterialhavingaredoxcouplepinnedat

A

thetopoftheO2pband,butwithtwovalencestates

theoxide,wouldofferthemaximumvoltageandcapa-

city.Theupperintrinsicvoltagelimitofsuchanoxide

canberaidbyincreasingthecovalentcomponentof

theM-Obondofacountercationtolowertheenergy

E

mustnotalsopushthepinnedredoxcouplefurtherthan

VV

ofthetopoftheO2pbands;butthistuningofE

thechangeinE.Comparisonoftheuppervoltagelimits

ofthenickeloxideshavingLiinoctahedralversus

tetrahedralsitesillustratesatuningofEby1.0V.

V

However,totakeadvantageoftheavailabilityoftwo

redoxcouplesonasingletransition-metalatom,itis

V

necessarytohaveahoststructurethatcanaccepttwoLi

atomspertransition-metalcation.Cannatureand/or

theimaginationofthesolidstatechemistidentifysuch

anelectrodematerialwithaμ

lytewindow?Anexampleoftheimaginativematerials

C

matchedtotheelectro-

designthatmaybeneededisgivenbyarecentreport

fromSunetal.

104

ofFreedomCARandVehicleTechnologiesoftheU.S.

Acknowledgment.Thisworkwassupportedbytheoffice

DepartmentofEnergyundercontractno.DE-AC03-

76SF00098andtheRobertA.WelchFoundationofHouston,

TX(GrantNo.F-1066).

References

(1)/.Accesdon05/25/2009.

(2).Accesdon05/25/2009.

(3)Hayashi,K.;Nemoto,Y.;Tobishima,S.;Yamaki,J.Electrochim.

(4)Xu,K.Chem.Rev.2004,104,4303.

Acta1999,44,2337.

(5)Imhof,R.;Novak,P.J.Electrochem.Soc.1999,146,1702.

(6)Egashira,M.;Takahashi,H.;Okada,S.;Yamaki,J.J.PowerSources

(7)Zhang,X.;Kostecki,R.;Richardson,T.J.;Pugh,J.K.;Ross,P.N.

2001,92,267.

(8)Fong,R.;vanSacken,U.;Dahn,J.R.J.Electrochem.Soc.1990,137,

J.Electrochem.Soc.2001,148,A1341.

(10)Vogdanis,L.;Martens,B.;Uchtmann,H.;Henl,F.;Heitz,W.

(9)Yazami,R.Electrochim.Acta1999,45,87.

2009.

(11)Sloop,S.E.;Pugh,J.K.;Wang,S.;Kerr,J.B.;Kinoshita,K.

Makromolekul.Chem.1990,191,465.

(12)Smart,M.C.;Smith,K.A.;Bugga,R.V.;Whitcanack,L.D.In

Electrochem.Solid-StateLett.2001,4,A42.

ElectrolytesforWideOperatingTemperatureRangeLi-IonCells.4th

AnnualInternationalConference:LithiumMobilePower2008,LasVegas,

(13)Koch,V.R.;Dominey,L.A.;Nanjundiah,C.;Onderchen,M.J.

NV,December8-9,2008.

(14)Webber,A.;Blomgren,G.E.InAdvancesinLi-IonBatteries;van

J.Electrochem.Soc.1996,143,798.

Schalkwijk,W.,Scrosati,B.,Eds.;KluwerAcademic/PlenumPublishers:

(15)Garcia,B.;Lavallee,S.;Perron,G.;Michot,C.;Armand,M.Electro-

NewYork,2002;Chapter6.

(16)Markevich,E.;Baranchugov,V.;Aurbach,D.Electrochem.Commun.

chim.Acta2004,49,4583.

(17)Wang,Y.;Zaghib,K.;Guerfi,A.;Bazito,F.F.C.;Torresi,R.M.;

2006,8,1331.

(18)Fuller,J.;Carlin,R.T.;Osteryoung,R.A.J.Electrochem.Soc.1997,

Dahn,J.R.Electrochim.Acta2007,52,6346.

(19)Zaghib,K.personalcommunication.

144,3881.

(20)Stasn,I.;Hambitzer,G.J.PowerSources2002,105,145.

ReviewChem.Mater.,Vol.22,No.3,2010603

(21)Zinck,L.;Borck,M.;Ripp,C.;Hambitzer,G.J.Appl.Electrochem.

(22)Wright,P.V.Brit.Polym.J.1975,7,319.

2006,36,1291.

(23)Armand,M.B.;Chagbano,J.M.;Duclot,M.J.InFastIonTransport

inSolid;Vashishta,P.,Mundy,J.N.,Shenoy,G.K.,Eds.;ElvierN

(24)Nishimoto,A.;Watanabe,M.;Ikeda,Y.;Kojiya,S.Electrochim.Acta

Holland:NewYork,1979;p131.

(25)Croce,F.;Appetecchi,G.B.;Persi,L.;Scrosati,B.Nature1998,394,456.

1998,43,1177.

(26)Croce,F.;Curini,R.;Martinelli,A.;Persi,L.;Ronci,F.;Scrosati,B.

(27)Croce,F.;Settimi,L.;Scrosati,B.Electrochem.Commun.2006,8,364.

J.Phys.Chem.B1999,103,10632.

(28)Pradel,A.;Ribes,M.Mater.Chem.Phys.1989,23,121.

(29)Adachi,G.;Imanaka,N.;Aono,H.Adv.Mater.1996,8,127.

(30)Minami,T.;Hayashi,A.;Tatsumisago,M.SolidStateIonics2006,

(31)Kim,Y.;Saienga,J.;Martin,S.W.J.Phys.Chem.B2006,110,16318.

177,2715.

(32)Dudney,N.J.InLithiumBatteries;Nazri,G.A.,Pistoia,G.,Eds.;

(33)Takada,K.;Aotani,N.;Kondo,S.J.PowerSources1993,43,135.

KluwerAcademicPublishers:Norwell,MA,2004;p623.

(34)Machida,N.;Maeda,H.;Peng,H.;Shigematsu,T.J.Electrochem.

(35)Nagata,K.;Nanno,T.J.PowerSources2007,174,832.1984,54,127.

Soc.2002,149,A688.Harrison,M.R.;Orchard,A.F.;Scott,E.G.J.SolidStateChem.

(36)Bates,J.B.;Dudney,N.J.;Neudecker,B.;Ueda,A.;Evans,C.K.(77)Harrison,M.R.;Edwards,P.P.;Goodenough,J.B.J.SolidState

(37)Feuillade,G.;Perche,Ph.J.Appl.Electrochem.1975,5,63.(78)Ferg,E.;Gummow,R.J.;deKock,A.;Thackeray,M.M.J.Electro-

SolidStateIonics2000,135,33.Chem.1984,54,426.

(38)Appetecchi,G.B.;Croce,F.;Marassi,R.;Persi,L.;Romagnoli,P.;chem.Soc.1994,141,L147.

(39)Persi,L.;Croce,F.;Scrosati,B.Electrochem.Commun.2002,4,92.

Scrosati,B.Electrochim.Acta1999,45,23.

(40)Scrosati,B.InAdvancesinLi-IonBatteries;vanSchalkwijk,W.,

Scrosati,B.,Eds.;KluwerAcademic/PlenumPublishers:NewYork,

(41)Fuller,J.;Breda,A.C.;Carlin,R.T.J.Electrochem.Soc.1997,144,

2002;Chapter8.

(42)Shin,J.-H.;Henderson,W.A.;Pasrini,S.Electrochem.Commun.

L67.

(43)Ye,H.;Huang,J.;Xu,J.J.;Khalfan,A.;Greenbaum,S.G.

2003,5,1016.

(44)Sirisopanaporn,C.;Fernicola,A.;Scrosati,B.J.PowerSources2009,

J.Electrochem.Soc.2007,154,A1048.

(45)Guerfi,A.;Dontigny,M.;Kobayashi,Y.;Vijh,A.;Zaghib,K.J.Solid

186,490.

(46)Cho,J.;Liu,M.Electrochim.Acta1997,42,1481.

StateElectr.2009,13,1003.

(47)Hayashi,A.;Kitade,T.;Ikeda,Y.;Kohjiya,S.;Matsuda,A.;Tatsumi-

(48)Inda,Y.;Katoh,T.;Baba,M.J.PowerSources2007,174,741.

sago,M.;Minami,T.Chem.Lett.2001,814.

(49)Murphy,D.W.;Carides,J.N.;DiSalvo,F.J.;Cros,C.;Waszczak,

(50)Kim,Y.;Goodenough,J.B.Electrochem.Solid-StateLett.2009,12,A73.

J.V.Mater.Res.Bull.1977,12,825.

(51)Blyr,A.;Sigala,C.;Amatucci,G.;Guyomard,D.;Chabre,Y.;Tarascon,

(52)Aurbach,D.J.PowerSources2000,89,206.

T.M.J.Electrochem.Soc.1998,145,194.

(53)Edstrom,K.;Gustafsson,T.;Thomas,J.O.Electrohim.Acta2004,50,

(54)Wang,Z.;Sun,Y.;Chen,L.;Huang,X.J.Electrochem.Soc.

397.

(55)Padhi,A.K.Ph.D.MappingRedoxEnergiesofElectrodeMaterials

A914.

2004,151,

(56)Steele,B.C.H.InFastIonTransportinSolids;vanGool,W.,Ed.;North-

forLithiumBatteries.Thesis,TheUniversityofTexasatAustin,1997.

(57)Wittingham,M.S.Science1976,192,1126.

Holland:Amsterdam,1973.

(58)Mitzushima,K.;Jones,P.C.;Wiman,P.J.;Goodenough,J.B.

(59)Wittingham,M.S.InFastIonTransportinSolids;vanGool,W.,Ed;

Mater.Res.Bull.1980,15,783.

(60)Dampier,F.W.J.Electrochem.Soc.1974,121,656.

North-Holland:Amsterdam,1973.

(61)Goodenough,J.B.;Mizushima,K.;Takeda,T.Jpn.J.Appl.Phys.

(62)Dey,A.N.;Sullivan,B.P.J.Electrochem.Soc.1970,117,222.

1980,19-3,305.

(63)Aurbach,D,InAdvancesinLi-IonBatteries;vanSchalkwijk,W.,

Scrosati,B.,Eds.;KluwerAcademic/PlenumPublishers:NewYork,

(64)Nagaura,T.;Tozawa,K.Prog.BatteriesSolarCells1990,9,209.

2002;Chapter1.

(65)Sinha,S.;Murphy,D.W.SolidStateIonics1986,20,81.

(66)Thackeray,M.M.;David,W.I.F.;Bruce,P.G.;Goodenough,J.B.

(67)Thackeray,M.M.;Jahnson,P.J.;DePicciotto,L.A.;Bruce,P.G.;

Mater.Res.Bull.1983,18,461.

(68)Amatucci,G.G.;Pereira,N;Zheng,T.;Tarascon,J.-M.J.Electro-

Goodenough,J.B.Mater.Res.Bull.1984,19,435.

(69)Choi,W.;Manthiram,A.J.Electrochem.Soc.2007,154,A792.

chem.Soc.2001,148,A171.

(70)Goodenough,J.B.;Hong,H.Y.-P.;Kafalas,J.A.Mater.Res.Bull.

(71)Manthiram,A.;Goodenough,J.B.J.SolidStateChem.1987,71,

1976,11,203.

(72)Goodenough,J.B.Electrochem.Soc.Proc.2000,99-24,1.

349.

(73)Goodenough,J.B.InAdvancesinLi-IonBatteries;vanSchalkwijk,W.,

Scrosati,B.,Eds.;KluwerAcademic/PlenumPublishers:NewYork,2002;

(74)Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough,J.B.J.Electro-

Chapter4.

(75)Johnston,D.C.;Prakash,H.;Zacharian,W.H.;Viswanathan,R.

chem.Soc.1997,144,1188.

(76)Edwards,P.P.;Egdell,R.G.;Fragala,I.;Goodenough,J.B.;

Mater.Res.Bull.1973,8,777.

(79)Goodenough,J.B.;Kim,Y.J.SolidStateChem.,inpress.

(80)Hert,J.T.;Huang,Q;McQueen,T.;Klimczuk,T.;Bos,J.W.G.;

(81)Kim,Y.;Goodenough,J.B.J.Phys.Chem.C2008,112,15060.

Viciu,L.;Cava,R.J.Phys.Rev.B2008,77,075119.

(82)Kim,Y.;Park,K.S.;Song,S.H.;Han,J.T.;Goodenough,J.B.

(83)Jellinek,F.ActaCrystallogr.1957,10,620.

J.Electrochem.Soc.2009,156,A703.

(84)Kim,J.-H.;Myung,S.-T.;Yoon,C.S.;Oh,I.-H.;Sun,Y.-K.

(85)Schougaard,S.B.;Breger,J.;Jiang,M.;Grey,C.P.;Goodenough,J.

J.Electrochem.Soc.2004,151,A1911.

(86)Kang,K.;Carlier,D.;Reed,J.;Arroyo,E.M.;Ceder,G.;Croguennec,

B.Adv.Mater.2006,18,905.

(87)Nanjundaswamy,K.S.;Padhi,A.K.;Goodenough,J.B.;Okada,S.;

L.;Delmas,C.Chem.Mater.2003,15,4503.

(88)Lu,Z.;Dahn,J.R.J.Electrochem.Soc.2002,149,A815.

Ohtsuka,H.;Arai,H.;Yamaki,J.SolidStateIonics1996,92

(89)Park,Y.J.;Hong,Y.S.;Wu,X.W.;Ryu,K.S.;Chang,S.H.J.Power

,1.

(90)Thackeray,M.M.;Kang,S.H.;Johnson,C.S.;Vaughey,J.T.;

Sources2004,129,288.

(91)Abe,K.;Ushigoe,Y.;Yoshitake,H.;Yoshio,M.J.PowerSources

Benedek,R.;Hackney,S.A.J.Mater.Chem.2007,17,3112.

(92)Liu,J.;Manthiram,A.Chem.Mater.2009,21,1695.

2006,153,328.

(93)Kim,Y.;Arumugam,N.;Goodenough,J.B.Chem.Mater.2008,20,

(94)Kim,Y.;Goodenough,J.B.Electrochem.Commun.2008,10,497.

470.

(95)Chan,C.K.;Peng,H.;Liu,G.;Mcllwrath,K.;Zhang,X.F.;Huggins,

(96)Kim,H.;Cho,J.NanoLett.2008,8,3688.

R.;Cui,Y.Nat.Nanotechnol.2008,3,31.

(97)Arico,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.-M.;Schalkwijk,W.

(98)Bruce,P.G.;Scrosati,B.;Tarascon,J.-M.Angew.Chem.,Int.Ed.

V.Nat.Mater.2005,4,366.

(99)Thackeray,M.M.;David,W.I.F.;Goodenough,J.B.Mater.Res.

2008,47,2930.

(100)Thackeray,M.M.;Vaughey,J.T.;Johnson,C.S.;Kropf,A.J.;

Bull.1982,17,785.

Tostmann,H.;Benedek,R.;Sarankonsri,T.;Hackney,S.A.Proc.-

(101)Thackeray,M.M.;Vaughey,J.T.;Fransson,L.M.L.JOM2002,

Electrochem.Soc.2001,2000-36,92.

(102)Park,K.S.;Schougaard,S.B.;Goodenough,J.B.Adv.Mater.2007,

54,20.

(103)Huang,Y.H.;Park,K.S.;Goodenough,J.B.J.Electrochem.Soc.

19

,848.

(104)Sun,Y.-K.;Myung,S.-T.;Park,B.-C.;Prakash,J.;Belharouak,I.;

2006,153,A2282.

Amine,K.Nat.Mater.2009,8,320.

邵华阳-巴黎圣母院读后感

Challenges for Rechargeable Li Batteries

本文发布于:2023-11-05 17:09:08,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1699175349207215.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:Challenges for Rechargeable Li Batteries.doc

本文 PDF 下载地址:Challenges for Rechargeable Li Batteries.pdf

下一篇:返回列表
标签:challenges
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|