华中科技大学
硕士学位论文
纳米复合软骨组织工程三维支架的的制备及其评价
姓名:***
申请学位级别:硕士
专业:生物医学工程
指导教师:***
20061102
华中科技大学硕士学位论文
摘要
导言:纳米羟基磷灰石(nano-HA)比普通磷灰石(HA)有更好的生物相容性性,近年来研究表明,na
no-HA晶粒的尺寸和形态与天然骨组织中的HA晶体十分近似,具有更好的降解性能、细胞粘附生长能力和骨诱导能力。本实验以nano-HA 和PDLLA(M=19w)为原料,制备多孔纳米复合支架材料并对其进行评价。并在此支架材料基础上,结合三维虚拟数字人技术、计算机辅助设计(CAD)、溶剂浇铸/粒子沥滤技术及激光烧结快速成形(RP)技术,进一步构建三维组织工程支架,探讨新的组织工程三维支架制备方法。
方法:采用溶剂浇铸/粒子沥滤技术制备出六种组织工程多孔支架材料,分别是D,L型聚乳酸(PDLLA)、微米级羟基磷灰石(micro-HA)/D,L型聚乳酸(PDLLA)以及四种不同比例(羟基磷灰石与聚乳酸的质量比为1:9, 1:4, 2:3, 1:1)的纳米羟基
磷灰石/PDLLA复合多孔支架材料;将软骨细胞种植于上述支架上。在SEM电镜下
观察支架的结构形貌,采用MTT方法观察细胞在多孔支架材料上的生长增殖情况,体外培养一周后对六组材料做SEM电镜测试。使用三维虚拟数字人的数据重建三维人体软骨组织模型,运用两种方法制备组织工程三维支架:利用选择性激光烧结(SLS)快速成形技术制得硅胶模具,然后再用传统方法浇铸成形;设计合理的支架孔结构,再由SLS技术直接成形。
结果显示:羟基磷灰石纳米晶粒均匀分布在PDLLA基质中,多孔支架中大孔与小孔共存、且互相连通,复合支架的孔隙率可达90%;六种组织工程支架材料中,
以含HA(50wt%)的nano-HA/PDLLA复合支架对软骨细胞的黏附能力和增殖能力
最好。RP技术可以精确快速便捷的构建出所设计的三维组织工程支架,相比传统方法制备的支架其孔隙率及孔径大小的控制有待提高。
结论:该工作表明,nano-HA/PDLLA复合多孔支架材料以及快速成形技术对于组织工程方法修复软骨缺损具有重要应用前景。
关键词:软骨组织工程,复合支架材料,生物相容性,三维支架构建,快速成形技
术
华中科技大学硕士学位论文
ABSTRACT
Introduction: Comparing with hydroxyapatite (HA), nano-hydroxyapatite has received much more attention due to its excellent biocompatibility. Recent rearch suggested that the composition, size and morphology of nano-HA rembled natural apatite crystals in bone minerals. There is much increa in protein adsorption and osteoblast adhesion and osteoconductivity on the nano-ceramic
materials compared to micro-ceramic materials. In this study, Porous scaffolds which were made of high molecular poly (D, L-lactide) (PDLLA) / hydroxyapatite nanocrystals (nano-HA) were fabricated through solvent-casting and particulate-leaching technique. The morphologies, mechanical properties, biodegradability and biocompatibility of the scaffolds were investigated. Then, 3D dummy human data, CAD and RP technique were combined to construct 3D tissue engineering scaffold. New method to fabricate 3D tissue engineering scaffold was arched. Materials and Methods: Six groups of scaffold were fabricated by using a solvent casting / particulate leaching technique, with PDLLA, micro-HA/PDLLA, and nano-HA/ PDLLA (nano-HA: PDLLA weight ratio 1:9, 1:4, 2:3, 1:1). The pha and morphology of the scaffolds were investigated by using SEM. Cells proliferation was evaluated quantitatively by MTT assay. The interaction between scaffolds and cells were obrved by HR-SEM. Results and Discussion: The results showed that nano-HA nanocrystals formed homogeneous dispersion in the PDLLA matrix. The porosity of scaffolds was up to 90%, and macropores and micropores coexisted and interconnected throughout the scaffolds. The tensile modulus for nanocomposites increas with nano-HA loading. The good mechanical properties for nano-HA composites may be due to the homogeneous dispersion of HA nanocrystals in the PDLLA matrix as well as the good interfacial adhesion. Cells grew well after cultured in the scaffold for five days. The morphology of the cells in the last group (nano-HA: PDLLA (w/w) =1:1) was better than oth
ers. 3D human data was ud to reconstruct 3D cartilage tissue model, 3D scaffold was fabricated with two methods: silica rubber mould were prepared by using SLS RP technique frist, then the scaffold was fabricated by traditional method; after designed reasonable structure, 3D scaffold was constructed by SLS technique.
Conclusion: In the study, we fabricated a nanocomposite porous scaffold, and this kind of scaffold showed outstanding biocompatibility and other biological properties. Tissue engineering scaffold could be constructed exactly, rapidly and conveniently by using RP technique. In conclusion, nano-HA/PDLLA porous scaffold and RP technique have a promising application in cartilage tissue engineering.
Keywords: Cartilage Tissue Engineering Composite scaffold, Biocompatibility,
3D scaffold construction, RP technique
独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本
文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。
学位论文作者签名:
日期:年月日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在_____年解密后适用本授权书。
本论文属于
不保密□。
(请在以上方框内打“√”)
学位论文作者签名:指导教师签名:
日期:年月日日期:年月日
华中科技大学硕士学位论文
1 绪论
1.1 概述
羟基磷灰石(HA)具有良好的生物相容性和骨传导性,已作为组织工程材料应用于细胞种植和骨修复[1]。然而其脆性使单一HA的临床应用受到限制[2]。同样,单一的聚DL-乳酸(PDLLA)也难以满足骨修复的应用要求[3]。羟基磷灰石和聚乳酸的复合物却可以充分发挥两种材料的优势,用于制备较为理想的组织工程支架材料。纳
米羟基磷灰石(nano-HA)的小尺寸和高比表面积,赋予其独特的生物学性能。Nano-HA 在尺寸和形态上更接近自然骨的无机成分[4,5],因而具有更优良的蛋白吸附和细胞黏附特性。本文主要研究不同尺度和成分比例的nano-HA / PDLLA复合多孔支架的制备及其对人软骨细胞黏附和增殖性能的影响。
1.2 组织工程
组织工程学(tissue engineering)是一门多学科交叉的新兴学科,它涉及材料学、工程学以及生命科学等诸多领域。“组织工程”的概念最早是由美国国家科学基金会于1987年正式确立,定义为:应用生命科学和工程学的原理与技术,在正确认识哺乳动物正常及病理两种状态下组织结构与功能关系的基础上,研究、开发用于修复、维护和促进人体各种组织或器官损伤后功能和形态生物替代物的学科[6]。
组织工程的核心是建立由细胞和生物材料构成的三维空间复合体。这一三维的空间结构为细胞提供了获取营养、气体交换、排泄废物和生长代谢的场所,也是形成新的具有形态和功能的组织、器官的物质基础。这与传统的二维结构(如细胞培养) 有着本质的区别。其最大的优点在于: ①形成具有生命力的活体组织,对病损组织进行形态、结构和功能的重建并达到永久性替代;②可取最少量的组织细胞(甚至可用组织穿刺的方法获得);经体外培养扩增后,来修复大块的组织缺损,达到无损伤修复创