公平的席位分配问题

更新时间:2023-06-08 20:27:30 阅读: 评论:0

公平的席位分配问题
    席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:
            某单位席位分配数 = 某单位总人数比例总席位
如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗?下面来看一个学院在分配学生代表席位中遇到的问题:
某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为
  系名            甲            乙              丙            总数
  学生数          100            60              40            200
  学生人数比例  100/200      60/200          40/200
  席位分配        10            6              4              20
后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为
  系名            甲          乙              丙            总数
  学生数          103          63              34            200
  学生人数比例    103/200      63/200          34/200
  按比例分配席位  10.3          6.3              3.4            20
  按惯例席位分配  10            6                4             20
    由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有
  系名              甲          乙            丙            总数
  学生数            103          63            34            200
  学生人数比例      103/200      63/200        34/200
  按比例分配席位    10.815      6.615          3.57            21           
  按惯例席位分配    11            7              3            21
这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。
模型构成
  先讨论由两个单位公平分配席位的情况,设
单位          人数      席位数        每席代表人数
单位A          p1          n               
单位B          p2          n2                 
要公平,应该有= 但这一般不成立。注意到等式不成立时有
  若  >,则说明单位A 吃亏(即对单位A不公平 )
  若<,则说明单位B 吃亏 (即对单位B不公平 )
因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:
某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得  p=2
另两个单位的人数和席位为  n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2
虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。
下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:
若    则称    为对A的相对不公平值, 记为 
若    则称    为对B的相对不公平值 ,记为 
由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。
确定分配方案:
    使用不公平值的大小来确定分配方案,不妨设>,即对单位A不公平,再分配一个席位时,关于,的关系可能有
1.        >  ,说明此一席给A后,对A还不公平;
2.        <  ,说明此一席给A后,对B还不公平,不公平值为
3.        >  ,说明此一席给B后,对A不公平,不公平值为
4.<  ,不可能
  上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有
则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2)<rA (n1,n2+1)进行简单处理,可以得出对应不等式
引入公式
于是知道增加的席位分配可以由Qk的最大值决定,且它可以推广到多个组的一般情况。用Qk的最大值决定席位分配的方法称为Q值法
对多个组(m组)的席位分配Q值法可以描述为:
1.先计算每个组的Q值:
                  Qk ,  k=1,2,…,m
2.求出其中最大的QQi(若有多个最大值任选其中一个即可)
3.将席位分配给最大QQi对应的第i组。
这种分配方法很容易编程处理。
模型求解
    先按应分配的整数部分分配,余下的部分按Q值分配。 本问题的整数名额共分配了19席,具体为:
      甲    10.815      n1 =10
      乙    6.615        n2 =6
      丙    3.570        n3 =3
对第20席的分配,计算Q
Q1=1032/(1011) = 96.45 ;  Q2=632/(67)= 94.5;  Q3 =342/(34)=96.33
因为Q1最大,因此第20席应该给甲系; 对第21席的分配,计算Q
Q1=1032/(1112)=80.37 ;  Q2 =632/(67)=94.5; Q3 =342/(34)=96.33
因为Q3最大,因此第21席应该给丙系
最后的席位分配为:
  甲 11席  乙  6席      丙  4席
注:若一开始就用Q值分配,以n1=n2=n3 =1逐次增加一席,也可以得到同样的结果。
简评:本题给出的启示是对涉及较多对象的问题,可以先通过研究两个对象来找出所考虑问题的一般的规律,这也是科学研究的常用方法。请对一般情况编程。

本文发布于:2023-06-08 20:27:29,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/168622725069600.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:公平的席位分配问题.doc

本文 PDF 下载地址:公平的席位分配问题.pdf

下一篇:返回列表
标签:分配   席位   公平   代表   学生   方法   单位   人数
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|