北师大版小学数学六年级下册 应用题的解题技巧 9、分类思路

更新时间:2023-06-07 17:54:27 阅读: 评论:0

9、分类思路
【分类思路】把一个复杂的问题,依照某种规律,分解成若干个较简单的问题,从而使问题得到解决,这就是分类思路。这种思路在解决数图形个数问题中经常用到。
例1 如图2.12,共有多少个三角形?
分析(用分类思路考虑):
这样的图直接去数有多少个三角形,要做到能不重复,又不遗漏,是比较困难的。怎么办?可以把图中所有三角形按大小分成几类,然后分类去数,再相加就是总数了。本题根据条件,可以分为五类(如图2.13)。
例2 如图2.14,象棋棋盘上一只小卒过河后沿着最短的路走到对方“将”处,这小卒有多少种不同的走法?
分析(运用分类思路分析):
小卒过河后,首先到达A点,因此,题目实际上是问:从A点出发,沿最短路径有多少种走法可以到达“将”处,所谓最短,是指不走回头路。
因为“将”直接相通的是P点和K点,所以要求从A点到“将”处有多少种走法,就必须是求出从A到P和从A到K各有多少种走法。
分类。一种走法:A到B、C、D、E、F、G都是各有一种走法。
二种走法:从A到H有两种走法。
三种走法:从A到M及从A到I各有三种走法。
其他各类的走法:因为从A到M、到I各有3种走法,所以从A到N 就有3+3=6种走法了,因为从A到I有3种走法,从A到D有1种走法,所以从A到J就有3+1=4种走法了;P与N、J相邻,而A到N有6种走法,A 到J有4种走法,所以从A到P就有6+4=10种走法了;同理K与J、E相邻,而A到J有4种走法,到E有1种走法,所以A到K就有4+1=5种走法。
再求从A到“将”处共有多少种走法就非常容易了。

本文发布于:2023-06-07 17:54:27,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/168613166723222.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:北师大版小学数学六年级下册 应用题的解题技巧 9、分类思路.doc

本文 PDF 下载地址:北师大版小学数学六年级下册 应用题的解题技巧 9、分类思路.pdf

标签:分类   思路   走法   问题   解决   过河   分析
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
  • 爆笑的笑话
    绿豆荚-三帮车视2023年3月16日发(作者:森林运动会)1幽默笑话大全爆笑经典短信幽默笑话大全爆笑1、口误伤不起呀:一次坐公交车,到某站台时,司机突然问到:有人下车么,没人我下啦!顿时车上笑做一团。2、听说你工作疯狂,难道是爱共产党,领导大家人人夸,能明白多么恨你,可否痴心改一改。(请看每句第三个字。)3、工作是苦是累,我们积极面对,干好职属分内,与同事友好相对,拿到工资问心无愧;花得自在,用得
  • 802℃幽默笑话段子
  • 798℃五儿孝母
  • 795℃恋爱说说
  • 749℃陈大惠老师
  • 433℃银行印鉴卡
  • 411℃汤姆索亚历险记梗概
  • 375℃联想思维
  • 359℃分门别类
  • 353℃译林小学英语
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|