“碳中和”背景下,固碳端的技术需求
提起固碳,我们首先想到的是自然过程,即通过海洋和陆地表面把大气中的二氧化碳吸收固定。但这里必须指出,人类活动每年都向大气中排放二氧化碳,这其中的一部分可以被自然过程所吸收,余下部分如不通过人为手段予以固定,则大气中的二氧化碳浓度还会逐年增高。所以我们讲固碳,主要是指通过人为努力固定下的那部分,而地球自然固碳过程则属于“天帮忙”,很难归功于具体的国家或实体。
“人努力”进行固碳一般可分两大途径,一是生态系统的保育与修复,二是把二氧化碳捕集起来后,或加工成工业产品,或封埋于地下或海底,这第二方面就是经常谈到的“碳捕获、利用与封存”——CCUS(Carbon Capture and Utilization-Storage)。
公众对生态系统固碳都比较熟悉,它是利用植物光合作用吸收大气中的二氧化碳,所吸收的碳有一部分长久保存在植物本身之中(比如树干),也会有一部分凋落后(比如树叶)腐烂进入土壤中以有机碳的形式得到较为长期的保存,当然有机碳也会部分转化成无机碳并同地表系统中的钙离子结合形成石灰石沉积。地表生态系统尽管类型多样,但真正起主要作用的还是森林生态系统,这是因为森林中的各种树木都有很长的生长期,在树木适龄期内,固
碳作用可持续进行;当树木进入成熟期,固碳能力就会减弱,但人们可以通过砍伐—再造林的方式继续保持正向固碳作用,而砍伐的木材可以做成家具等产品,不至于把多年来固定的碳快速返还给大气。
因此,生态系统固碳的重点在于森林生态系统,森林生态系统的管理一在于保育,二在于扩大面积。我国有大量适宜森林生长的山地,这些地区过去生态受到过较大程度的破坏,最近几十年来,一直处在恢复之中,而这些人工次生林或乔/灌混杂林都很“年轻”,有进一步发育、固碳的潜力。同时,我国又有不少非农用地可作造林之用,包括近海的滩涂种植红树林,城市乡村的绿化用地种植树木。所以说,生态系统建设在我国实现碳中和过程中将起到至关重要的作用。
人为固碳的另一条途径是CCUS,它包括碳捕集技术、捕集后的工业化利用技术(分为生物利用和化工利用两大类)、地质利用和封存技术。对这些技术,国内外尚处在研发阶段,真正大面积的应用尚未见到。
碳捕集技术分三大类。一是化学吸收法,它用化学吸收剂同烟道气中的二氧化碳生成盐类,再加热或减压将二氧化碳释放并收集。二是吸附法,又细分为化学吸附法和物理吸附
法。化学吸附法是用吸附材料同二氧化碳分子先作化学键合,再改变条件把二氧化碳分子解吸附并收集;物理吸附法是利用活性炭、天然沸石、分子筛、硅胶等对烟道气中的二氧化碳作选择性吸附后再解吸附回收。三是膜分离法,即利用膜对气体分子透过率的不同,达到分离、收集二氧化碳之目的。在具体操作上,碳捕集还可分为燃烧前捕集、燃烧后捕集、化学链燃烧捕集、生物质能碳捕集、从空气中直接捕集等技术。
碳捕集后的工业化生物利用技术目前主要有四大类,一是利用二氧化碳在反应器中生产微藻,这些微藻再用作生产燃料、肥料、饲料、化学品的原料。二是将捕集到的二氧化碳注入温室中,用以增加温室中作物的光合作用,这个过程又可称为二氧化碳施肥。三是把二氧化碳同微生物发酵过程相结合,生成有机酸。四是把二氧化碳用于合成人工淀粉。碳捕集后的工业化化工利用又分两大类技术途径,一大类是把二氧化碳中的四价态碳还原后加甲烷、氢气等气体,再整合成甲醇、烯烃、成品油等产品。另一大类为非还原技术,有二氧化碳加氨气后制成尿素、加苯酚后合成水杨酸、加甲醇后合成有机酸酯等技术,也有合成可降解聚合物材料、各类聚酯材料等技术。
地质利用技术也有很多类型,这些技术有的已在工业化示范中,有的尚停留在实验室探
索阶段。比如利用收集起来的二氧化碳驱油、驱煤层气、驱天然气、驱页岩气等,这属于油气开采领域的应用,这类技术的一个共性是通过生产性钻孔把超临界的二氧化碳压到地层中,利用它驱动孔隙、裂隙中的油、气流出开采性钻孔,达到油气增产或增加油气采收率的目的,与此同时,二氧化碳则滞留在孔隙、裂隙中得以长期封存。该类技术国内外已有工业应用示范。而另一些技术则在探索过程中,比如用于开采干热岩中的地热。干热岩埋深在数千米,其内部基本没有流体存在,温度在180℃以上,开采干热岩中的热能需要打生产井并用压裂手段使岩石增加裂隙,然后在生产井中注入工作介质,让其流动并采集热量,最后从开采井中收集热量。一些研究表明:用二氧化碳作为工作介质,既起到开采干热岩热量的作用,又可把部分二氧化碳封存于地下。
地质封存技术则是把二氧化碳收集后直接通过钻孔注入地下深处或灌入深部海水中。这里要特别指出:深海对二氧化碳的溶解保存能力是巨大的。
总之,固碳的技术有多种,但这些技术不可避免地需要额外能量加入,因此有可能把最终产品的成本提高一大块。至于地质封存,尽管理论和实践上可行,但它似有“空转”之嫌。从现阶段看,只有生态固态才可兼顾经济效益和社会效益。