调查问卷的信度效度分析方法 问卷调查法是教育研究中广泛采用的一种调查方法, 根据调查目的设 计的调查问卷是问卷调查法获取讯息的工具, 其质量高低对调查结果 的真实性、 适用性等具有决定性的作用。 为了保证问卷具有较高的可 靠性和有效性,在形成正式问卷之前,应当对问卷进行试测,并对试 测结果进行信度和效度分析, 根据分析结果筛选问卷题项, 调整问卷 架构,从而提升问卷的信度和效度。 信度和效度分析的方法包括逻辑 分析和统计分析,本文主要讨论后者。
一、信度分析 信度( Reliability )即可靠性,它是指采用同样的 方法对同一对象重复测量时所得结果的一致性程度。 信度指标多以相 关系数来表示:大致可分为三类:稳定系数(跨时间的一致性) 、等 值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性) 。 若以信度系数来表示信度的大小。 信度系数越大, 表示测量的可信程 度越大。究竟信度系数要多少才算有高的信度。 学者 DeVellis(1991) 认为,0.60〜0.65 (最好不要);0.65〜0.70 (最小可接受值);0.70〜 0.80 (相当好);0.80〜0.90 (非常好)。由此,一份信度系数好的量 表或问卷,最好在 0.80以上, 0.70至 0.80之间还算是可以接受的范 围;分量表最好在 0.70以上, 0.60至 0.70之间可以接受。若分量表
的内部一致性系数在 0.60 以下或者总量表的信度系数在 0.80以下,
应考虑重新修订量表或增删题项
信度分析的方法主要有以下四种:
1、 重测信度法 这一方法是用同样的问卷对同一组被调查者间隔 一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度 属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年 月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、 习惯等在短时间内也不会有十分明显的变化。 如果没有突发事件导致 被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。 由于重测信度法需要对同一样本试测两次, 被调查者容易受到各种事 件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实 施中有一定困难。
2、 复本信度法 复本信度法是让同一组被调查者一次填答两份问 卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信 度法要求两个复本除表述模式不同外,在内容、格式、难度和对应题 项的提问方向等方面要完全一致, 而在实际调查中, 很难使调查问卷 达到这种要求,因此采用这种方法者较少。
3、 折半信度法 折半信度法是将调查项目分为两半,计算两半得 分的相关系数, 进而估计整个量表的信度。 折半信度属于内在一致性 系数,测量的是两半题项得分间的一致性。 这种方法一般不适用于事 实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信 度分析。在问卷调查中,态度测量最常见的形式是5级李克特(Likert) 量表。进行折半信度分析时,如果量表中含有反意题项,应先将反意 题项的得分作逆向处理,以确保各题项得分方向的一致性,然后将全 部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数
(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗
(Spearman-Brown)公式:ru=2rhh/(1+rhh)求出整个量表的信度系数
(ru)
4、a信度系数法 Cron bach a信度系数是目前最常用的信度系数,
其公式为:
a =(n/n1)*(1-(刀 S)/St2)
其中,n为量表中题项的总数,Si2为第i题得分的题内方差,St2为 全部题项总得分的方差。从公式中可以看出,a系数评价的是量表中 各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、 意见式问卷(量表)的信度分析。
二、效度分析 效度(Validity )即有效性,它是指测量工具或手
段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效
度(Face Validity)、准则效度(Criterion Validity)和架构效度 Construct
Validity)。效度分析有多种方法,其测量结果反映效度的不同方面。 常用于调查问卷效度分析的方法主要有以下几种。
1、单项与总和相关效度分析 这种方法用于测量量表的内容效度。
内容效度又称表面效度或逻辑效度, 它是指所设计的题项能否代表所 要测量的内容或主题。 对内容效度常采用逻辑分析与统计分析相结合 的方法进行评价。逻辑分析一般由研究者或专家评判所选题项是否 “看上去” 符合测量的目的和要求。 统计分析主要采用单项与总
和相 关分析法获得评价结果,即计算每个题项得分与题项总分的相关系 数,根据相关是否显著判断是否有效。若量表中有反意题项,应将其 逆向处理后再计算总分。
2、准则效度分析 准则效度又称为效标效度或预测效度。准则效
度分析是根据已经得到确定的某种理论, 选择一种指标或测量工具作 为准则(效标),分析问卷题项与准则的联系,若二者相关显著,或 者问卷题项对准则的不同取值、 特性表现出显著差异, 则为有效的题 项。评价准则效度的方法是相关分析或差异显著性检验。 在调查问卷 的效度分析中, 选择一个合适的准则往往十分困难, 使这种方法的应 用受到一定限制。
3、结构效度分析 结构效度是指测量结果体现出来的某种结构与
测值之间的对应程度。 架构效度分析所采用的方法是因子分析。 有的 学者认为,效度分析最理想的方法是利用因子分析测量量表或整个问
卷的架构效度。因子分析的主要功能是从量表全部变量(题项)中提 取一些公因子,各公因子分别与某一群特定变量高度关联, 这些公因 子即代表了量表的基本架构。透过因子分
析可以考察问卷是否能够测 量出研究者设计问卷时假设的某种架构。 在因子分析的结果中,用于 评价架构效度的主要指标有累积贡献率、共同度和因子负荷。累积贡 献率反映公因子对量表或问卷的累积有效程度, 共同度反映由公因子 解释原变量的有效程度,因子负荷反映原变量与某个公因子的相关程 度。为了提升调查问卷的质量,进而提升整个研究的价值,问卷的信 度和效度分析绝非赘疣蛇足,而是研究过程中必不可少的重要环节。
Cron bach a 系数 柯隆巴哈(Cron bach 1951)提出计算一个测量系统(问卷或测验)的 信度称为Cron bach a系数(简称a系数),是目前社会科会研究最常 使用的信度。当一个研究主题(或构面)由很多项目组合,每个问项 都与主题相关,由总分的变异数与问项的变异数做为评量信度的指标 即为a系数。
01. Cron bach a系数的定义
利用各问项变异数之和与整份量表分数的变异数的比值, 可用来估计 一份量表的信度,柯隆巴哈(Cron bach)提出a系数为:
此式为最常作为信度指标,其中s2i表示第i个问项Xi的变异数,s2h表 所有问项总和(H= X1+X2+…+Xn)的变异数(即整份测验分数的变异
数),n是问项个数。
02. Cron bach a系数的实施技巧
要做信度分析需先检查每个问项是否都是同方向的(即都是正面问
法,也就是题间的相关系数都是正的),如有一题与其它题相关系数
都是负的,应考虑将此题先“变号”或“删除”后再进行计算a系数
如有受测者乱答,可将它的数据删除后再算 a值
对问卷调查当有题目与其它题目是负相关时须注意是否反向问法。 如 是,则应先将得分反向,再计算 a信度或是删除该题。若为测验,则 不能做反向处理,只能做删除题目。
03标准化Cron bach a系数的定义
若一份量表有n题,题间的平均相关系数为r,则此量表的标准化a 系数为
nr
(X —
1 + (w - l)r
04.利用SPSS进行信度分析
在SPSS中,专门用来进行测验信度分析的模块为 Scale下的
Reliability Analysis ;使用 Data Reduction之下的 Factor模块。
Reliability Analysis模块主要功能是检验测验的信度,主要用来检验 折半信度、库李及a系
数以及Hoyt信度系数值。至于重测信度和复 本信度,只需将样本在二次(份)测验的分数的数据合并到同一数据 文件之后,利用Correlate之下的Bivariate求其相关系数,即为重测 或复本信度;而评分者信度则使用的 Spearman等级相关及Kendall