有限元强度折减系数法计算土坡稳定安全系数的精度研究

更新时间:2023-06-01 19:27:30 阅读: 评论:0

有限元强度折减系数法计算土坡稳定安全系数的精度研究
摘要:有限元强度折减系数法在边坡稳定分析中的应用正逐渐受到人们的重视。本文较为全面地分析了土体屈服准则的种类、有限元法自身计算精度以及H(坡高)、β(坡角)、C(粘聚力)、Φ(摩擦角)对折减系数法计算精度的影响,并给出了提高计算精度的具体措施。通过对106个算例的比较分析,表明折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且离散度极小,这不仅验证了文中所提措施的有效性,也说明了将折减系数法用于分析土质边坡稳定问题是可行的。
关键词:强度折减系数 边坡稳定 屈服准则 误差分析
  自弗伦纽期于1927年提出圆弧滑动法以来,至今已出现数十种土坡稳定分析方法,有极限平衡法、极限分析法、有限元法等。不少研究表明,各种方法所得稳定安全系数都比较接近,可以说,这些方法已经达到了相当高的精度。 近年来,由于计算机技术的长足发展,基于有限元的折减系数法在边坡稳定分析中的应用备受重视。与极限平衡法相比,它不需要任何假设,便能够自动地求得任意形状的临界滑移面以及对应的最小安全系数,同时它还可以真实的反映坡体失稳及塑性区的开展过程。到目前为止,已有很多学者对折减系数法进行了
较为深入的研究[1,2,3],并在一些算例中得到了与极限平衡法十分接近的结果。但总体说来,此法仍未在工程界得到确认和推广,究其原因在于影响该法计算精度的因素很多,除了有限元法引入的误差外,还依赖于所选用的屈服准则。
  此论文');">论文的目的有两点:(1)力图全面分析屈服条件和有限元法本身对折减系数法计算精度的影响,并提出应选用何种屈服准则以及提高有限元法计算精度的具体措施;(2)结合工程实例,分析对边坡稳定安全系数影响最大的4个主要参数(H坡高、β坡角、C粘聚力、Φ摩擦角)对折减系数法计算精度的影响。从以往的计算结果来看,严格法(Spencer)所得稳定安全系数比简化Bishop法平均高出约2%~3%,而通过106个算例的比较分析,表明:折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且误差离散度极小,可以认为是正确的解答[4]。这有力地说明了将有限元折减系数法用于分析土坡稳定问题是可行的,但必须合理地选用屈服条件以及严格地控制有限元法的计算精度,同时也表明:有限元折减系数法所得安全系数稍微偏高,其原因有待进一步研究。
1 折减系数法的基本原理
  Bishop等将土坡稳定安全系数F定义为沿整个滑移面的抗剪强度与实际抗剪强度之比,工
程中广为采用的各种极限平衡条分法便是以此来定义坡体稳定安全系数。有限元强度折减系数法的基本思想与此一致,两者均可称之为强度储备安全度。因后者无法直接用公式计算安全系数,而需根据某种破坏判据来判定系统是否进入极限平衡状态,这样不可避免地会带来一定的人为误差。尽管如此,仍发展了一些切实可行的平衡判据,如:限定求解迭代次数,当超过限值仍未收敛则认为破坏发生;或限定节点不平衡力与外荷载的比值大小;或利用可视化技术,当广义剪应变等值线自坡角与坡顶贯通则定义坡体破坏[3]。文中平衡判据取:当节点不平衡力与外荷载的比值大于10-3时便认为坡体破坏。
  有限元折减系数法的基本原理是将土体参数 C、Φ 值同时除以一个折减系数 Ftrial,得到一组新的C′、Φ′值,然后作为新的材料参数带入有限元进行试算,当计算正好收敛时,也即 Ftrial再稍大一些(数量级一般为10-3),计算便不收敛,对应的Ftrial被称为坡体的最小安全系数,此时土体达到临界状态,发生剪切破坏,具体计算步骤可参考文献[2],文中如无特别说明,计算结果均指达到临界状态时的 折减系数。

(1)
(2)
2 屈服准则的影响
  用折减系数法求解实际边坡稳定问题时,通常将土体假设成理想弹塑性体,其中本构模型常选用摩尔-库仑准则(M-C)、Drucker-Prager准则以及摩尔-库仑等面积圆[5]准则。
  摩尔-库仑准则可用不变量I1,J2,θσ表述成如下形式:

本文发布于:2023-06-01 19:27:30,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/168561885062532.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:有限元强度折减系数法计算土坡稳定安全系数的精度研究.doc

本文 PDF 下载地址:有限元强度折减系数法计算土坡稳定安全系数的精度研究.pdf

标签:系数   折减   分析   屈服   准则   有限元   计算精度
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|