结构的整体稳定性
1概述
结构的整体稳定性指结构的整体工作能力,以及抵御抗倾覆、抗连续坍塌的能力。
结构的失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的后果往往比较严重。正因为如此,在实际工程中不允许结构发生失稳破坏。
1.1稳定性的分析层次
在对某个结构进行稳定性分析,实际上应该包括两个层次。
(一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。
(二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。
1.2整体稳定性分析的内容
通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。
(1)Buckling分析(屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。)
Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。
但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。
(2)非线性稳定分析
由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。
目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。
由于弧长法属于一种非线性求解方法,而且在非线性稳定分析中通常需要考虑几何非线性、材料非线性及弹塑性,所以通常需要求助于通用有限元软件。比如ANSYS、ABAQUS、NASTRAN、ADINA等。
在这些通用有限元软件中,可以较好的计算结构的屈曲前、屈曲后性能。通常通过“荷载-位移”曲线来判断计算结果的合理性及结构的极限稳定承载力。通过有限元软件不但可以较好的对结构进行非线性稳定分析,同时还可以考虑初始几何缺陷、材料非线性、材料弹塑性等问题。基本上可以实现对结构的真实模拟分析。
1.3整体稳定性分析的关键问题
结构的整体稳定性分析是很长时间以来一直备受关注的课题,而且在今后很长的段之间内仍将是热门研究对象。这是因为结构整体稳定承载力的影响因素很多,例如:初始几何缺陷、焊接应力、材料非线性、荷载形式等。所以很多问题需要大家深入考虑。
2钢结构的整体稳定性
在钢结构的可能破坏形式中,属于失稳破坏的形式包括:结构和构件的整体失稳;结构和构件的局部失稳。钢结构和构件的整体稳定,因结构形式的不同、截面形式的不同和受力状态的不同,可以有各种形式。
下面主要介绍钢结构中轴心受力构件的整体稳定性、梁的整体稳定性、压弯构件的整体稳定性。
2.1轴心受压构件整体稳定
当结构在荷载作用下处于平衡位置时,微小外界扰动使其偏离平衡位置,若外界扰动撤除后仍能恢复到初始平衡位置,则平衡是稳定的;若构件不能恢复到初始平衡位置,但仍能保持在新的平衡位置,则构件处于临界状态,也称随遇平衡;若构件不能恢复到初始平衡
位置,且在微小扰动下产生很大的弯曲变形或扭转变形或既弯又扭的弯扭变形而丧失承载能力,则称这种现象为轴心受压构件丧失整体稳定性或屈曲。
(a)弯曲屈曲 (b)扭转屈曲 (c)弯扭屈曲