☆排列组合解题技巧归纳总结

更新时间:2023-05-29 14:16:48 阅读: 评论:0

排列组合解题技巧归纳总结
排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学内容
1.分类计数原理(加法原理)
完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有
m 种不同的方法,那么完成这件事共有:
种不同的方法.
2.分步计数原理(乘法原理)
完成一件事,需要分成n
个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n
步有m 种不同的方法,那么完成这件事共有:
种不同的方法.
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.
解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有1
3C
然后排首位共有1
4C    最后排其它位置共有34A
由分步计数原理得113434288C C A =
练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两
端的花盆里,问有多少不同的种法?
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合
元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A  种不同的排法
练习题:某人射击8枪,命中4枪,4枪命中恰好有
3枪连在一起的情形的不同种数为  20
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节
目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一
步排好的6个元素中间包含首尾两个空位共有种4
6A 不同的方法,由分步计数原理,
节目的不同顺序共有54
56A A      种
练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为  30
四.定序问题倍缩空位插入策略
例人排队,其中甲乙丙3人顺序一定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一
起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有
不同排法种数是:73
73/A A
(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4
7A 种方法,其余的三
个位置甲乙丙共有 1种坐法,则共有4
7A 种方法。
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有      方法
练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,
共有多少排法?        5
10C
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法
练习题:
1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42
2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87 六.环排问题线排策略
例6. 8人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44
A 并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!
A B C D E A
E H G F
练习题:6颗颜色不同的钻石,可穿成几种钻石圈  120 七.多排问题直排策略
例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有
24A 种,再排后4个位置上的特殊元素丙有1
4A 种,其余的5人在5个位置上任意
允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种
一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m
n A n
排列有55A 种,则共有215
445A A A 种
练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排
中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一
个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方
法共有2454C A
练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,
每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种
九.小集团问题先整体后局部策略
例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数
之间,这样的五位数有多少个?
解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共
有2222A A 种排法,由分步计数原理共有222
222A A A 种排法.
练习题:
1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一      品种的必须连在一起,并且水彩画不在两端,那么共有陈列方
式的种数为254
254A A A
2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255
255A A A 种
十.元素相同问题隔板策略
例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?    解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研
小集团排列问题中,先整体后局部,再结合其它策略进行处理。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。
一班二班三班四
班六班七班
练习题:
1. 10个相同的球装5个盒中,每盒至少一有多少装法  49C
2 .100x y z w +++=求这个方程组的自然数解的组数  3
103C  十一.正难则反总体淘汰策略
例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的
取法有多少种?
解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个
偶数的取法有1255C C ,和为偶数的取法共有123555C C C +。再淘汰和小于10的偶数共9种,符合条件的取法共有123
5
559C C C +-
练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的
抽法有多少种?
十二.平均分组问题除法策略
例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?
解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为
ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),
则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取
将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为1
1m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出
它的反面,再从整体中淘汰.

本文发布于:2023-05-29 14:16:48,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/168534100819927.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:☆排列组合解题技巧归纳总结.doc

本文 PDF 下载地址:☆排列组合解题技巧归纳总结.pdf

标签:问题   元素   共有
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
  • 爆笑的笑话
    绿豆荚-三帮车视2023年3月16日发(作者:森林运动会)1幽默笑话大全爆笑经典短信幽默笑话大全爆笑1、口误伤不起呀:一次坐公交车,到某站台时,司机突然问到:有人下车么,没人我下啦!顿时车上笑做一团。2、听说你工作疯狂,难道是爱共产党,领导大家人人夸,能明白多么恨你,可否痴心改一改。(请看每句第三个字。)3、工作是苦是累,我们积极面对,干好职属分内,与同事友好相对,拿到工资问心无愧;花得自在,用得
  • 801℃幽默笑话段子
  • 794℃恋爱说说
  • 772℃五儿孝母
  • 728℃陈大惠老师
  • 417℃银行印鉴卡
  • 411℃汤姆索亚历险记梗概
  • 366℃联想思维
  • 357℃分门别类
  • 353℃译林小学英语
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|