排列组合与概率经典教案
两个基本原理:
1.加法原理(分类计数原理):做一件事,完成它有类办法,在第一类办法中有种不同的方法, 在第二类办法中有种不同的方法, ……,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.
2.乘法原理(分步计数原理): 做一件事,完成它有个步骤,做第一步有种不同的方法, 做第二步有有种不同的方法, ……, 做第步有种不同的方法,那么完成这件事共有: 种不同的方法.
特别注意:分类是独立的、一次性的;分步是连续的、多次的。
三组基本概念:
1. 排列
1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元
素中取出m个元素的一个排列。
2)排列数:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。通常用表示。
特别地,当时,称为全排列,当时,称为选排列。
2. 组合
1)组合:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作。
3. 事件与概率
1)事件的分类:(1)必然事件:在一定的条件下必然要发生的事件;(2)不可能事件:在一定的条件下不可能发生的事件;(3)随机事件:在一定的条件下可能发生也可能
不发生的事件。
2)一些特殊事件:
(1)等可能事件:对于每次随机试验来说,只可能出现有限个不同的试验结果;另外,所有不同的试验结果,它们出现的可能性是相等的。
(2)互斥事件:不可能同时发生的两个事件,我们把它称为互斥事件。如果事件A1,A2,…,An中的任何两个都是互斥事件,那么就说事件A1,A2,…,An彼此互斥。
(3)对立事件:必有一个发生的两个互斥事件叫做对立事件。事件A的对立事件通常记作。特别地,有、的对立事件分别是、,即、。
(4)相互独立事件:一个事件是否发生对另一个事件发生的概率没有影响的两个事件叫做相互独立事件。
3)事件的概率:在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。
一些重要公式:
1.排列数公式 :
这里,且。
2.组合数公式: ,这里,且。
注意:第一、二个公式分别多用于计算、证明。
3.等可能事件的概率公式:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是。如果事件A包含的结果有个,则事件A的概率为。
4.互斥事件有一个发生的概率公式:如果事件A1,A2,…,An彼此互斥,那么事件A1+A2+…+An发生(即A1,A2,…,An中有一个发生)的概率,等于这n个事件分别发生的概率的和,即:P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
特别地,1)有对立事件的概率的和等于1 即:P(A)+P()= 1。
2)对于事件A与B及它们的和事件与及事件有下面的关系:
5.相互独立事件同时发生的概率公式:如果事件A1,A2,…,An相互独立,那么这几个事件同时发生的概率,等于每个事件发生的概率的积,即
P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)。
6.n次独立重复试验中这个事件恰好发生k次的概率公式:如果在1次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
Pn(k)=CPk(1-P)n-k(其中k=0,1,2,……,n)
基本思想和二十一个方法:
解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有
然后排首位共有
最后排其它位置共有
由分步计数原理得
位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件
练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法
要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.
练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种
元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端
练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30
四.定序问题倍缩空位插入策略
例人排队,其中甲乙丙3人顺序一定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:
(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法
练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有种不同的排法
允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为种
练习题:
1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42
2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法
六.环排问题线排策略
例6. 8人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共有(8-1)!种排法即!
一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有
练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120
七.多排问题直排策略
例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有种,再排后4个位置上的特殊元素丙有种,其余的5人在5个位置上任意排列有种,则共有种
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解:第一步从5个球中选出2个组成复合元共有种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有种方法,根据分步计数原理装球的方法共有
解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?