排列组合全部20种方法

更新时间:2023-05-29 13:41:12 阅读: 评论:0

排列组合解法
  解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略
一.特殊元素和特殊位置优先策略
1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
练习、 7种不同的花种在排成一列的花盆里,假设两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?
二.相邻元素捆绑策略
2、7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
练习、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为    
三.不相邻问题插空策略
3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为     
四.定序问题倍缩空位插入策略
4、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?
练习、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
五.重排问题求幂策略
5、把6名实习生分配到7个车间实习,共有多少种不同的分法
练习
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为    
2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法   
六.环排问题线排策略
6、 8人围桌而坐,共有多少种坐法?
一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有
练习、 6颗颜色不同的钻石,可穿成几种钻石圈?
七.多排问题直排策略
7、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
                                 
 
练习、有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是    
八.排列组合混合问题先选后排策略
8、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?
练习、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有    
九.小集团问题先整体后局部策略
9、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?
小集团排列问题中,先整体后局部,再结合其它策略进行处理。
练习、
.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为     
2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有     
十.元素相同问题隔板策略
10、有10个运发动名额,分给7个班,每班至少一个,有多少种分配方案?
 
将n个相同的元素分成m份〔n,m为正整数〕,每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为
练习题:
1.10个相同的球装5个盒中,每盒至少一有多少装法? 
2 .求这个方程组的自然数解的组数?
 
十一.正难则反总体淘汰策略
11、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的
  取法有多少种?
有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,
再从整体中淘汰.
练习、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的
抽法有多少种?
十二.平均分组问题除法策略
12 6本不同的书平均分成3,每堆2本共有多少分法?
平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(为均分的组数)防止重复计数。
练习题:
1、将13个球队分成3,一组5个队,其它两组4个队, 有多少分法?
210名学生分成3,其中一组4, 另两组3人但正副班长不能分在同一组,有多少种不同的
分组方法
3、某校高二年级共有六个班级,现从外地转  入4名学生,要安排到该年级的两个班级且每班安
排2名,则不同的安排方案种数为______
十三. 合理分类与分步策略
例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法
解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。
练习:
1、从4名男生和3名女生中选出4人参加某个座谈会,假设这4人中必须既有男生又有女生,则不同的选法共有     
2、3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.
 
十四.构造模型策略
14、马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?
一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决
练习、某排共有10个座位,假设4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?
十五.实际操作穷举策略
15、设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法
对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果
练习
1、同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?
2、给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有      
十六. 分解与合成策略
16、 30030能被多少个不同的偶数整除
练习:正方体的8个顶点可连成多少对异面直线
分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略
十七.化归策略
17、 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?
处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题
练习、某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?
十八.数字排序问题查字典策略
18、由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?
数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。
练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是  
十九.树图策略
19、人相互传球,由甲开始发球,并作为第一次传球,经过次传求后,球仍回到甲的手中,则不同的传球方式有______ 
对于条件比较复杂的排列组合问题,不易用公式进行运算,树图会收到意想不到的结果
练习: 分别编有1,2,3,4,5号码的人与椅,其中号人不坐号椅〔〕的不同坐法有多少种?
二十.复杂分类问题表格策略
20、有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法
一些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能到达好的效果.

本文发布于:2023-05-29 13:41:12,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1685338872178476.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:排列组合全部20种方法.doc

本文 PDF 下载地址:排列组合全部20种方法.pdf

标签:问题   策略   共有   元素   相邻   分类   排列组合   节目
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|