欢迎来讨论边界条件中湍流量的设置问题哦PostBy:2007-11-911:46:00
在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在F
LUENT中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些
变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是
经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,
湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义
函数)来定义,具体方法请参见相关章节的叙述。
在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在F
LUENT中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些
变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是
经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,
湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义
函数)来定义,具体方法请参见相关章节的叙述。
在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流
条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍
流条件可以简化模型的设置。在设置边界条件时,首先应该统计表格模板 定性地对流动进行分析,以便边
界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使
计算发散而无法进行下去。
在TurbulenceSpecificationMethod(湍流定义方法)下拉列表中,可以简单地用一个常
数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的
值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出
现违背流动规律的错误设置:
(1)湍流强度(TurbulenceIntensity)
湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg
(8-1)
上式中u',v'和w'是速度脉动量,u_avg是平均速度。
湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认
为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算
出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。
在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。
内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,
则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几
个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,
这个公式是从管流经验公式得到的:
I=u’/u_avg=0.16*Re_DH^-0.125(8-2)
其中Re_DH是HydraulicDiameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力
直径为特征长度求出的。
(2)湍流的长度尺度与水力直径
湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分
发展的管流中,因为漩涡尺度不可能大于管道直径,所以l是受到管道尺寸制约的几何量。
湍流长度尺度l与管道物理尺寸L关系可以表示为:
l=0.07L
(8-3)
式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面
不是圆形时,L可以取为管道的水力直径。
湍流的特征长取决于对湍流发展具有决定性影响的几何尺度。在上面的讨论中,管道直径是
决定湍流发展过程的唯一长度量。如果在流动中还存在其他对流动影响更大的物体,比如在
管道中存在一个障碍物,而障碍物对湍流的发生和发展过程起着重要的干扰作用。在这种情
况下,湍流特征长就应该取为障碍物的特征长度。
从上面的分析可知,虽然式(8-2)对于大多数管道流动是适用的,但并不是普遍适用的,在
某些情况下可以进行调整。
在FLUENT鹿茸的吃法及禁忌 中选择特征长L或湍流长度尺度l的方法如下:
在FLUENT中选择特征长L或湍流长度尺度l的方法如下:
1)对于充分发展的内流,可以用IntensityandHydraulicDiameter(湍流强度与水力直
径)方法定义湍流,其中湍流特征长度就是HydraulicDiameter(水力直径)HD。
2)对于导向叶片或分流板下游的流场,可以用IntensityandHydraulicDiameter(湍流
强度与水力直径)定义湍流,并在HydraulicDiameter(水力直径)中将导向叶片紫草的功效 或分流
板的开口部分的长度L定义为特征长度。
3)如果进口处的流动为受到壁面限制且带有湍流边界层的流动,可以在IntensityandLe
ngthScale面板中用边界层厚度delta_99通过公式l=0.4*delta_99计算得到湍流长度尺
度l。最后在TurbulenceLengthScale(湍流长度尺度)中输入l的值。
(3)湍流粘度比
湍流粘度比mu_t/mu与湍流雷诺数Re_t成正比。湍流雷诺数的定义为:
Re_t=k*k/(Epsilon*nu)
(8-4)
在高雷诺数边界层、剪切层和充分发展的管道流动中的数值较大,其量级大约在100到10
00之间。而在大多数外部流动的自由流边界上,湍流粘度比的值很小。在典型情况下,其
值在1到10之间。
(4)推导湍流变量时采用的关系式
为了从前面讲到的湍流强度I,湍流长度尺度L和湍流粘度比mu_t/mu求出其他湍流变量,
必须采用几个经验关系式。在FLUENT中使用的经验关系式主要包括下面几种:
1)从湍流强度和长度尺度求出修正的湍流粘度
在使用Spalart-Allmaras模型时,可以用湍流强度I和长度尺度l求出修正的湍流粘度,具
体公式如下:
nu~=Sqrt(1.5)*u_avg*I*L
(8-5)
在使用FLUENT时,如果在Spalart-Allmaras模型中选择IntensityandHydraulicDia
meter(湍流强度与水力直径)选项,则修正的湍流粘度就用这个公式求出。其中的长度尺
度l则用式(8-3)求出。
2)用象棋学习 湍流强度求出湍流动能
湍流动能k与湍流强度I的关系如下:
k=1.5*(u_avg*I)^2
(8-6)
如果在使用FLUENT时没有直接输入湍流动能k和湍流耗散率Epsilon的值,则可以使用
IntensityandHydraulicDiameter(湍流强度与水力直径)、IntensityandLengthScal
e(湍流强度与长度尺度)或IntensityandViscosityRatio(湍流强度与粘度比)等方法
确定湍流动能,而确定的办法就是使用上面的公式(8-6)。
3)用长度尺度求出湍流耗散率
长度尺度l与湍流耗散率之间的关系为:
epsilon=C_mu^0.75*k^1.5/l(8-7)
式中C_mu为湍流模型中的一个经验常数,其值约等于0.09。
在没有直接输入湍流动能k和湍流耗散率epsilon的情况下,可以用IntensityandHydra
ulicDiameter(湍流强度与水力直径)或IntensityandLengthScale(湍流强度与长度尺
度)等办法,利用上述公式确定湍流耗散率epsilon。
4)用湍流粘度比求出湍流耗散率
湍流耗散率epsilon与湍流粘度比mu_t/mu和湍流动能k的关系如下:
epsilon=rho*C_mu*k^2/mu*(mu_t/mu)
^-1(8-8)
式中C_mu为湍流模型中的一个经验常数,其值约等于0.09。
在没有直接输入湍流动能k和湍流耗散率epsilon的情况下,可以用IntensityandViscos
ity
Ratio(湍流强度与粘度比)定义湍流变量,实际上就是利用上述公式算出湍流耗散率epsil
on。
5)湍流衰减过程中湍流耗散率的计算
如果计算风洞阻尼网下游试验段中的流场,可以用下式求出湍流耗散率Epsilon:
epsilon=delta_k*U_farfield/L_farfield(8-9)
式中delta_k是湍流动能k的衰减量,比如可以设为入口处k值的10%,U_farfield是自
由流速度,L_farfield是自由流区域的长度。(8-9)式是对高雷诺数各向同性湍流衰减指数律
的线性近似,其理论基础是衰减湍流中湍流动能k的方程:
U*(partialderivativeofUwithrespecttox)=-epsilo
n(8-10)
如果用这种方法计算epsilon,还需要用(8-8)式检验计算结果,以保证湍流粘度比mu
_t/mu不过大。虽然这种方法在FLUENT中没有使用,但是可以用这种方法估算出自由流
中的湍流耗散率ep推销产品的文案 silon,然后再用(8-6)式确定k,最后在TurbulenceSpecification
Method(湍流定义方法)下拉列表中选择KandEpsilon(k和Epsilon)并k和Epsil
on的计算结果输入到相应的栏目中。
6)用长度尺度计算比耗散率
如果知道湍流长度尺度l,可以用下式确定omega:
omega=k^0.5/(C_mu^0.25*l)(8-11)
式中C_mu和长度尺度l的取法与前面段落中所述相同。在使用IntensityandHydraulic
Diameter(湍流强度与水力直径)或IntensityandLengthScale(湍流强度与长度尺度)
定义湍流时,FLUENT用的就是这种方法。
7)用湍流粘度比计算比耗散率
omega的值还可以用mu_t/mu和k通过下式计算得出:
omega=rho*k/mu*(mu_t/mu)^-1(8-12)
在使用IntensityandViscosityRatio(湍流强度与粘度比)方法定义湍流时,FLUENT就
是使用上述关系式对湍流进行定义的。
8)用湍流动能定义雷诺应力分量
在使用RSM(雷诺应力模型)时,如果用户没有在Reynolds-StessSpecificationMethod
(雷诺应力定义方法)的Reynolds-StressComponents(雷诺应力分量)选项中直接定义
雷诺应力的值,则雷诺应力的值将由给定的k值计算得出。假定湍流是各向同性的,即:
Average(u’_i*u’_j)=0
(8-13)
且:Average(u’_aphla*u’_aphla)=2k/3
(8-14)
如果用户在Reynolds-StressSpecificationMethod(雷诺应力定义方法)下拉列表中选择
KorTurbulenceIntensity(k或湍流强度I)时,FLUE行政执法工作总结 NT就用这种方法定义湍流。
(5)在大涡模拟方法(LES)中定义进口湍流
在使用速度进口条件时,可以将湍流强度作为对LES进口速度场的扰动定义在边界条件中。
在实际计算中,根据湍流强度求出的随机扰动速度分量与速度场叠加后形成LES算法边界
上的、随机变化的速度场。
本文发布于:2023-03-22 01:53:54,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1679421235154835.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:湍流度.doc
本文 PDF 下载地址:湍流度.pdf
留言与评论(共有 0 条评论) |