第四届全国周培源大学生力学竞赛
材料力学试题
题一(25分)
如图所示,狭长矩形截面直杆单侧作用有轴向均布剪切荷载,其单位长度
上的大小为q.
1、(5分)任意截面上的轴力N(x)=______与弯矩M(x)=______
2、(5分)如果平面假设与胡克定律成立,任意截面上正应力σ(x,y)=______
3、(5分)q、N与M之间的平衡微分关系为______
4、(10分)任意横截面上剪应力t(x,y)=______
题二(20分)
今有两个相同的L型元件,用螺栓连接,以传递拉力P。几何尺寸如图所示,
L型元件是刚体,螺栓是线性弹性体,其拉压弹性模量为E,许用应力为[σ]
设两L型元件间无初始间隙,也无预应力,并设在变形过程中两个螺母与L
型元件始终贴合,螺栓与L型元件在孔壁间无相互作用力,则
1、(5分)在L型元件孔内一段螺栓的轴力N=______
2、(5分)在L型元件孔内一段螺栓的弯矩M=______
3、(5分)两个L型元件相对转角△θ=______
4、(5分)许用应力[P]
题三(20分)
矩形等截面悬臂梁高h,宽b,长l。重Q的重物从高H=60Ql^3/(EI)处落到自
由端并附着于它。梁的质量不计,E为材料的弹性模量,I为截面轴惯性矩。
1、(5分)梁内最大冲击正应力σd,max
将梁设计成两段等长的阶梯梁(两段各长L/2),梁高h保持不变,各段梁宽
度可按要求设计。在梁内最大冲击正应力不变的条件下,按最省材料原则,阶梯
梁在靠自由端一段宽b
1,靠固定端一段宽b2,,则
2、(5分)b
1
/b
2
=______
3、(5分)阶梯梁比等截面梁节省材料(分数或百分数表示)
题四(15分)
如图所示,简支梁AB承受均布荷载q,在C,D两点的两个相等的集中力P,
在B点的集中力偶M的作用。U是梁的应变余能(线弹性情形下等于应变能)
1、(5分)的几何意义为______
2、(5分)的几何意义为______
3、(5分)的几何意义为______
题五(20分)
曲杆AB的轴线是半径为R的四分之一圆弧,杆的横截面是直径为d的实心
圆,d<
集中力P。已知材料的拉压弹性模量E、剪切模量G与许用应力[σ]。
1、(10分)按第三强度理论,许用荷载[P]=______。
2、(10分)在载荷P的作用下,自由端绕杆轴线的转角θB=______。
题六(20分)
如图所示,为传递扭矩T将一实心圆轴与一空心圆轴以紧配合的方式连接
在一起。设两轴间均匀分布的配合压强P、摩擦系数u,实心轴直径d、空心轴
外径D,连接段长度L均为已知。两轴材料相同。
1、(5分)二轴在连接段全部发生相对滑动时的临界扭矩值Tcr=______
2、(15分)设初始内外轴扭矩均为零,当传递的扭矩从零增加到T=2Tcr/3
时(无卸载过程),绘制实心内轴在连接段L的扭矩图。(假定材料力学关于圆轴
扭转的公式全部成立)。
理论力学试题
题一(10分)
立方体的边长为a,作用有力系如图。其中,三个力的大小均为F,两个力
偶的力偶矩均为M=Fa,方向如图。若欲使该立方体平衡,只需在某处加一个力
即可,则在Oxyz坐标系中,
(1)所加的力为______
(2)在图中画出该力的示意图。
题二(10分)
A、B两物块质量均为m,静止如图叠放,设各接触处的摩擦系数均为f。
(3)若用手慢慢地去拉B块,其运动现象为______
(4)若用手突然快速拉B块,其运动现象为______
(5)在上述两种情况下,A所能获得的最大水平加速度为______
题三(10分)
设均质圆盘齿轮A与一大齿轮内接,齿轮A的质量为m,半径为r,OA杆长
为L,坐标系Oxyz与杆OA固结。若OA杆以角速度ω、角加速度ε转动,方向
如图。在图示位置,将齿轮A的惯性力系向O点简化,则在坐标系Oxyz中,
(6)力系的主矢______
(7)主矩为______
题四(10分)
均质细杆AB,长为L,重量为P,由绳索水平静止悬挂如图。在突然剪短右
端绳索的瞬间,
(8)若忽略绳索的变形,则A端绳索的约束力大小为______,
AB杆的角速度大小为______。
(9)若考虑绳索的弹性变形,则A端绳索的约束力大小为______,
AB杆的角速度大小为______。
题五(10分)
AB杆的A端沿圆槽O运动,B端与轮轴铰接。轮轴沿直线轨道只滚不滑。圆
槽O的半径为R,轮轴内外半径分别为R
1
、R
2
,AB长为L。图示瞬时,已知A点
的速度为V
A
,AB杆中点M的切向加速度为零。则此瞬时
(10)P点的速度V
P
大小为______;
(11)M点的加速度大小为______。
题六(15分)
图示系统在铅垂面内运动,,刚杆1、2、3、4长度均为a,质量不计。均质
刚杆AB质量为M,长为L。C、D两质点的质量均为m,M=2m。
(12)系统的自由度为______
(13)当系统作微小运动时,其运动微分方程为______
(14)当系统作微小运动时,3杆与4杆的相对运动规律为______
题七(10分)
在光滑水平面上,质点A、B的质量均为m,由一不计质量的刚性直杆连接,
杆长为l。运动开始时,θ=0,A点在坐标原点,速度为零,B点速度为V
j
,则系
统在运动过程中,
(15)直杆转动的角速度θ’=______
(16)A点的运动轨迹是______
(17)B点的运动轨迹是______
题八(15分)
图示为一个简单的“不倒翁”模型,由空壳ADBE和配重C组成。不计空壳
质量,其底部轮廓线ADB是半径为R的圆弧,且充分粗糙。配重C在空壳内的y
轴上,质量为M。若要求“不倒翁”直立时平衡且稳定,,则
(18)配重C的质量M______
(a)越大越好;(b)越小越好;(c)可为任意值;(d)条件不够不能确定。
(19)配重C的位置范围______
(20)若已知M、R、lOCl=d,则模型微摆动的周期______
题九(10分)
设Oxyz为参考坐标系,矩形板(三角形为其上的标志)可绕O点作定点运
动。为了使矩形板从状态1(yz平面内)运动到状态2(xy平面内),根据欧拉
转动定理,该转动可绕某根轴的一次转动实现,则在Oxyz参考坐标系中
(21)该转轴的单位矢量______
(22)转角为______
本文发布于:2023-03-15 22:38:44,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1678891125142863.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:周培源力学竞赛.doc
本文 PDF 下载地址:周培源力学竞赛.pdf
留言与评论(共有 0 条评论) |