祖冲之圆周率(祖冲之圆周率精确到小数点后几位)

更新时间:2023-03-03 02:08:25 阅读: 评论:0

祖冲之的圆周率纪录保持近1000年,他的圆周率是怎么记下来的?

祖冲之是南北朝时期著名的数学家,一生致力于钻研自然科学,首次将圆周率精确到了小数点后七位,对数学的发展做出了很大的贡献。祖冲之算出来的圆周率在3.1415926~3.1415927之间,后人也曾用他的名字命名圆周率为“祖冲之圆周率”或者“祖率”,在天文,立法等一切涉及到圆的方面都应用非常广泛。

最初刘徽创立割圆木,祖冲之在这种方法的基础上,将圆周率推算到了更加精确的程度,算出圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值介于两者之间,成为了世界上第一个将圆周率精确到如此精度的人,用这两个近视值来进行计算非常简便,也展示出我国古代数学水平发展程度之高,直到1427年阿拉伯的一位数学家才求出了更加精确的圆周率数值。关于祖冲之圆周率的记录方法,目前主要有两种说法:

一、由祖冲之所著《缀术 》记载

据说,祖冲之曾写过一本数学著作《缀术》,记录了他研究圆周率的成果以及研究方法,但当时社会对于数学的关注度并不高,认为数学是一种无用的学科,无人关注这本数学著作,以至于后来有所失传。

二、《隋书·律历志》 记载

《隋书·律历志》中有记载,“古之九数,圆周率三,圆径率一,其术疏舛。”“南徐州从事史祖冲之,以圆径一亿为一丈,...,密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。 ”这是目前正史中唯一能够找到的关于祖冲之圆周率的记载。

关于祖冲之记录圆周率的方法至今还有很多谜团。但不可否认的是,他对于我国古代数学所做出的贡献是非常巨大的。


祖冲之是怎么计算出圆周率的?

祖冲之是我国古代著名的数学家和天文学家,他在数学上最重要的成就是把圆周率的小数位史无前例地计算到第七位,这个精度在随后的800年里一直是世界第一。那时是公元480年,一切都要依靠手工计算的时代(甚至算盘可能还没有出现),算个开方都费劲,那么,祖冲之是如何算出精度这么高的圆周率呢?

圆周率并不是通过先作圆,然后量周长和直径,最后算出来的。因为这样做的误差很大,测量误差不可避免。事实上,古代数学家在很长一段时间里都是用几何方法来计算圆周率。

祖冲之算圆周率所使用的方法是刘徽发明的割圆术,这与阿基米德所用的方法有些不同。阿基米德通过做圆的外切和内接正多边形,来计算圆周率的上下限,因为边数越多的正多边形越接近于圆。

刘徽的割圆术基于圆的内接正多边形,他用正多边形的面积来逼近圆的面积。分割越多,内接正多边形和圆之间的面积越来越小,两者越来接近。无限分割之后,内接正多边形和圆将会合二为一。

如上图所示,在一个半径为r的圆中做正3×2^n(n为正整数)边形,假设其边长为a_n,即AB=a_n。AB的中点为P,连接OP交圆于C。那么,AC和BC就是正3×2^(n+1)边形的边长,可以表示为a_(n+1)。

在直角三角形AOP中,根据勾股定理:

OA^2=AP^2+OP^2

令OP=b_n,由此可得:

令PC=c_n,c_n=PC=OC-OP=r-b_n

在直角三角形APC中,根据勾股定理:

AC^2=AP^2+PC^2

由此可得:

知道正3×2^n边形的边长之后,再根据刘徽多边形面积公式,可以算出正6×2^n边形的面积。根据上述正多边形边长的迭代公式,不断的把圆分割下去,圆面积的计算精度会越来越高。

在刘徽的方法中,引入了极限和无穷小分割的思想。刘徽的方法更为巧妙,也更为简洁。刘徽算到了正3072边形,结果得到的圆周率为3.1416。

祖冲之在刘徽割圆术的基础上,算到了正24576边形,并根据刘徽圆周率不等式,确定了圆周率的下限(肭数)为3.1415926,上限(盈数)为3.1415927。并且,祖冲之还顺便给出了圆周率的一个近似分数355/113,其前六位都是正确的。

在没有计算机和算盘的帮助下,祖冲之用算筹来计算乘方和开方,硬生生地把圆周率的小数位算到了第七位,这需要极其巨大的毅力和艰苦卓绝的付出。在祖冲之的努力下,此后800年里,没有人能够算出比这精度更高的圆周率。


祖冲之的圆周率是多少?

三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在
3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

祖冲之的计算圆周率的故事是什么?

祖冲之的计算圆周率的故事是祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是 一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫作筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。

用算筹来计算不像用笔,笔算可以留在 纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。

祖冲之为求得圆周率的精准数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有 50 次,最后计算出的数字达到小数点后十六、七位。

数学史上的创举——“祖率”

祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。

祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“这个精确推算值”用他的名字命名为“祖冲之圆周率”,简称“祖率”。


祖冲之圆周率第几位 祖冲之圆周率有多先进

1、祖冲之把圆周率推算到第七位。祖冲之首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。

2、南北朝时祖冲之算出的圆周率的近似值在3.1415926和3.1415927之间,并提出圆周率的约率为22/7,密率为355/113。祖冲之首创上下限的提法,将圆周率规定在这个界限间。并且他的圆周率精确值在当时世界遥遥领先,直到1000年后阿拉伯数学家阿尔卡西才超过他。所以,国际上曾提议将“圆周率”定名为“祖率”。

祖冲之与圆周率的故事

祖冲之是世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。

祖冲之提出的它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间,也是直到一千年以后,才由德国称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的,这是有意的捏造。

记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方越的成就。

那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了刘徽所创立和面卓首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。

在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。

祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。

要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。

通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。

因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有的小数进行15927加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。

今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。

这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年,苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为“祖冲之环形山”。

祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过,并用最新的圆周率成果修正古代的量器容积的计算。

古代有一种量器叫做“釜”,一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。

他还重新计算了汉朝刘歆所造的“律嘉量”(另一种量器,与上面提到的 都是类似于现在我们所用的“升”等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值。为人们的日常生活提供了方便。

以后,人们制造量器时就采用了祖冲之的“祖率”数值。祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数,并得出了圆周率分数形式的近似值。

祖冲之究竟用什么方法得出这一结果,现在无从查考;如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要花费多少时间和付出多么巨大的劳动啊!

据《隋书·律历志》记载,祖冲之以一忽(一丈的一亿分之一)为单位,求直径为一丈的圆的周长,求得盈数为3.1415927、肭数为3.1415926,圆周率的真值介于盈肭两数之间。

《隋书度量衡》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽的割圆术,但也有别的多种猜测。这两个近似值准确到小数第7位,是当时世界上最先进的成就。

直到一千多年以后,15世纪阿拉伯数学家卡西和16世纪法国数学家F.韦达才得到更精确的结果。祖冲之确定了π的两个渐近分数,约率22/7和密率355/113。

其中密率355/113(≈3.1415929)西方直到16世纪才由德国人V.奥托发现。它是三个成对奇数113355再折两段组成,优美、规整、易记。为了纪念祖冲之的杰出贡献,有些外国数学史家把圆周率π的密率叫做“祖率”。

祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。

本文发布于:2023-02-28 21:38:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1677780505114753.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:祖冲之圆周率(祖冲之圆周率精确到小数点后几位).doc

本文 PDF 下载地址:祖冲之圆周率(祖冲之圆周率精确到小数点后几位).pdf

标签:圆周率   小数点   祖冲之   几位   精确
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|