平行线的判定(平行线的判定方法)

更新时间:2023-03-02 12:23:46 阅读: 评论:0

所谓平行线判定定理,就是如何证明两条直线具备互相平行的关系,教科书上列出的平行线判定定理包括三条,分别是先证明“一组同位角相等”、或者“一组内错角相等”,或者“一组同旁内角互补”,由此就可以推理得到“两条直线互相平行”的结论。

平行线判定定理一

两条直线被第三条直线所截,如果截得的一组同位角相等,那么,这两条直线互相平行。我们可以简单说成“同位角相等,两直线平行”。同学们运用这条判定定理进行证明时,必须先在题目给出的图中准确地找到符合要求的一组同位角,所以,理解并掌握同位角的概念非常关键。所谓同位角,就是在第三条直线的同侧,而且在两条被截直线同侧的两个角。如果同学们能准确锁定一组相等的同位角,就能证明到两条被截直线互相平行。

平行线判定定理二

两条直线被第三条直线所截,如果截得的一组内错角相等,那么,这两条直线互相平行。这条定理可以简写为“內错角相等,两直线平行”。与上一条定理的运用方法相似,同学们必须理解并掌握内错角的概念,并准确地锁定符合要求的一组内错角。所谓內错角,就是分别位于第三条直线的两侧,而且夹在两条被截直线内侧的两个角。只要同学们在题目给出的图中找到一组相等的內错角,就能证明到两条被截直线具有互相平行的关系。

平行线判定定理三

两条直线被第三条直线所截,如果截得的一组同旁内角互补,那么,这两条直线互相平行。这条定理可以简单说成“同旁内角互补,两直线平行”。与前两条定理的运用方法相似,同学们要在题目给出的图中找到一组同旁内角。所谓同旁内角,就是位于第三条直线的同侧,而且夹在两条被截直线内侧的两个角。只要同学们找到一组具备互补关系的同旁内角,就能证明到“两条被截直线互相平行”的结论。

结语

平行线的判定定理是初中几何的重要知识点,同学们必须理解并熟记这些定理,只有这样才能达到熟练运用其解题的目的。

本文发布于:2023-02-28 21:09:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1677731026100923.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:平行线的判定(平行线的判定方法).doc

本文 PDF 下载地址:平行线的判定(平行线的判定方法).pdf

标签:平行线   方法
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|