怎么进行数据分析
进行数据分析:
1、要求明确:准确
明确需求主要是与他人沟通与需求相关的一切内容,并清晰准确地理解和表达相关内容。
在需求沟通中,通过掌握需求的核心内容,可以减少反复沟通。需求的核心内容可以从分析目的、分析主体、分析口径、分析思路、完成时间五个方面来确定。此外,在沟通的过程中,可以适当提出自己的想法,让需求更加清晰立体。
2、确定思路:全面、深入
分析思想是分析的灵魂,是细化分析工作的过程。分析思路清晰有逻辑,能有效避免反复分析问题。从分析目的出发,全面、深入地拆解分析维度,确定分析方法,最终形成完整的分析框架。
3、处理数据:高效
当我们进行数据分析时,我们可能会得到混乱的数据,这就要求我们清洁、整理、快速、准确地加工成适合数据分析的风格。
此时需要使用数据分析软件以工作流的形式提取数据模型的语义,通过易于操作的可视化工具将数据加工成具有语义一致性和完整性的数据模型。系统支持的数据预处理方法包括:采样、拆分、过滤和映射、列选择、空值处理、并行、合并行、元数据编辑、JOIN、行选择、重复值去除等。
4、数据分析:合适的数据
分析数据在分析过程中的地位是首要任务。从分析的目的出发,运用适当的分析方法或模型,使用分析工具分析处理过的数据,提取有价值的信息。
5、显示数据:直观
展示数据又称数据可视化,是以简单直观的方式传达数据中包含的信息,增强数据的可读性,让读者轻松看到数据表达的内容。
6、写报告:建议落地,逻辑清晰
撰写报告是指以文件的形式输出分析结果,其内容是通过全面科学的数据分析来显示操作,可以为决策者提供强有力的决策依据,从而降低操作风险,提高利润。
在撰写报告时,为了使报告更容易阅读和有价值,需要注意在报告中注明分析目标、口径和数据来源;报告应图文并茂,组织清晰,逻辑性强,单一推理;报告应反映有价值的结论和建议。
7、效果反馈:及时
所谓效果反馈,就是选择合适有代表性的指标,及时监控报告中提出的战略执行进度和执行效果。只有输入和输出才能知道自己的操作问题点和闪点,所以效果反馈是非常必要的。反馈时要特别注意两点,一是指标要合适,二是反馈要及时。
如何做数据分析?
如何做好数据分析?
数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
通过面向企业业务场景提供一站式大数据分析解决方案,能够为企业在增收益、降成本、提效率、控成本等四个角度带来价值贡献。
1、增收益
最直观的应用,即利用数据分析实现数字化精准营销。通过深度分析用户购买行为、消费习惯等,刻画用户画像,将数据分析结果转化为可操作执行的客户管理策略,以最佳的方式触及更多的客户,以实现销售收入的增长。
下图为推广收支测算分析,为广告投放提供决策依据。
下图为渠道销量分析,为渠道支持提供数据支撑。
2、降成本
例如通过数据分析实现对财务和人力的管理,从而控制各项成本、费用的支出,实现降低成本的作用。
下图为生产成本分析,了解成本构成情况。
下图为期间费用预实对比分析,把控费用情况。
3、提效率
每个企业都会出具相关报表,利用数据分析工具,如数钥分析云,不懂技术的业务人员也能够通过简单的拖拉拽实现敏捷自助分析,无需业务人员提需求、IT人员做报表,大大提高报表的及时性,提高了报表的使用效率。
通过数据分析工具,能够在PC端展示,也支持移动看板,随时随地透视经营,提高决策效率。
4、控风险
预算是否超支?债务是否逾期?是否缺货了、断货了?客户的回款率怎么样?设备的运行是否正常?哪种产品是否需要加速生产以实现产销平衡?...其实,几乎每个企业都会遇到各种各样的风险问题。通过数据分析,能够帮助企业进行实时监测,对偏离了预算的部分、对偏离了正常范围的数值能够进行主动预警,降低企业风险。
下图为税负率指标,当综合税负率过高,可以实现提示和预警。
下图为重要指标预警,重点监控项目的毛利率。
如何做数据分析
做数据分析,需要从数据和分析两个方向共同入手:
1、数据培养
数据培养是进行有效数据分析的基础建设,不是什么数据都可以用来进行数据分析的,企业在注重数据量的积累的同时,还要注重数据积累的质量,将数据培养的意识和任务要求相结合,自上而下推行数据培养的机制。
举个例子,很多企业意识到了信息化、数字化建设的重要性,将部署商业智能BI进行信息化建设提上了日程。但在商业智能BI项目规划时,很容易发现企业根本没有部署商业智能BI进行数据分析可视化的条件,原因就是数据缺漏、错误频出,相关的业务部门系统数据库也没有建设,缺少业务数据,这就是没有把数据培养做起来的后果。
想要培养高质量的数据,必须提前做好数据培养规划,动员企业全体员工共同完成数据的管理机制。这不是什么短期内就能完成的工作,而是需要员工在日常业务活动中,按照统一的流程、规范来生产、管理数据,长期坚持下来,在业务活动中沉淀数据,按照规范化、流程化、标准化逐步填补企业的关键数据库。
当然,让员工执行数据培养任务不能只靠规定来强制执行,要建立完善的奖惩制度,将数据作为日常的考核指标。同时,企业还应该部署业务信息系统,让企业的财务、销售、生产、运营等不同部门员工有数据培养的工具,在完成业务活动后自动传输数据,将日常业务过程、流程中的数据沉淀到系统后台数据库中。
2、分析方法
分析方法是有效利用数据、实现数据价值的重要手段。如果没有数据分析方面的人才和熟练的分析方法运用,即使有再好的数据,也无法转化为富有价值的信息。进行数据分析前,数据分析人员必须熟练掌握主流的分析方法,比如对比分析、象限分析、趋势分析、描述性分析、预测分析等。
举个简单的例子,人类天生就对数字的大小有很强的敏感性,拿一组没有任何标识的数据展示,人们一眼看过去就会分析出它们的大小差异,如果这些数据之间相互有关联,那这就是有效的对比分析。
一般用到对比分析,通常是在选定的时间区域内,对比业务在不同情况下的差异,分析出业务是进行了增长还是发生了缩减的情况。
例如,上图中2021年9月的销量相比8月的销量有所减少,这时候就要深入分析为什么环比销量会减少,可以考虑调取今年3月和去年3月的产品生产数量,看看是不是生产环比下降,导致销量较少。同理,还可以把供应链、经销商、人流量等等都拿进行对比分析,确认到底是什么影响了销量。
总之,对比分析的优势就是能够很清晰地分析不同数值之间的差异,从而得到这些差异背后形成的原因。
派可数据 商业智能BI可视化分析平台
如何做数据分析
做数据分析:明确需求主要是与他人沟通与需求相关的一切内容,并清晰准确地理解和表达相关内容。
在需求沟通中,通过掌握需求的核心内容,可以减少反复沟通。需求的核心内容可以从分析目的、分析主体、分析口径、分析思路、完成时间五个方面来确定。此外,在沟通的过程中,可以适当提出自己的想法,让需求更加清晰立体。
数据分析
是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
如何进行有效的数据分析
首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;
什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。
专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。
那么,我们做数据 分析的目的是什么呢?
事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。
数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析
工作中我们运用数据分析的作用有哪些?
1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等
2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题
3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。
最重要的一点:
我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?
然后,我们来看数据分析的六部曲
1、明确分析目的和思路:
这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。
2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。
3、数据处理:
主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。
4、数据分析:
首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。
5、数据展现:
数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点
6、撰写报告:
数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。
本文发布于:2023-02-28 20:54:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167770700397231.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:怎么做数据分析(怎么做数据分析报告).doc
本文 PDF 下载地址:怎么做数据分析(怎么做数据分析报告).pdf
留言与评论(共有 0 条评论) |