克拉默法则是什么
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。
克拉默法则有两种记法:
1、记法1:若线性方程组的系数矩阵可逆(非奇异),即系数行列式 D≠0。有唯一解,其解为
2、记法2:若线性方程组的系数矩阵可逆(非奇异),即系数行列式 D≠0,则线性方程组⑴有唯一解,其解为
其中Dj是把D中第j列元素对应地换成常数项而其余各列保持不变所得到的行列式。
记法1是将解写成矩阵(列向量)形式,而记法2是将解分别写成数字,本质相同。
扩展资料
一、克莱姆的主要成就:
克莱姆的主要著作是《代数曲线的分析引论》(1750[1]),首先定义了正则、非正则、超越曲线和无理曲线等概念,第一 次正式引入坐标系的纵轴(Y轴),然後讨论曲线变换,并依据曲线方程的阶数将曲线进行分类。
为了确定经过5 个点的一般二次曲线的系数,应用了著名的“克莱姆法则”,即由线性方程组的系数确定方程组解的表达式。该法则於1729年由英国数学家马克劳林(Maclaurin,Colin,1698~1746)得到,1748年发表,但克莱姆的优越符号使之流传。他还提出了“克莱姆悖论”。
二、克拉默法则的证明:
1、充分性:设A可逆,那么显然
是
的一个解。又设X1是
其他不为X0的解,即
两边同时左乘A-1得
上面两式矛盾,因为不存在其他不为X0的解,故
是的一个解。
2、必要性:设
的唯一解X0。如A不可逆,齐次线性组AX=O就有非零解Y0,
X0+Y0也是
的一个解,矛盾,故不可逆,证毕。
参考资料来源:百度百科——克拉默法则
参考资料来源:百度百科——克莱姆
克拉默法则
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。
1、当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解。
2、如果方程组无解或者有两个不同的解,那么方程组的系数行列式必定等于零。
3、克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。
克拉默法则(Kramer's rule)是一种直接用行列式解线性方程组的方法。把线性方程组记为矩阵乘法的形式。
Ax=b(1)(1)Ax=b
其中AA为系数矩阵。当AA为N×NN×N的方阵且行列式|A|≠0|A|≠0时(即满秩矩阵),方程有唯一解(见 “线性方程组解的结构”)。该解可以用克拉默法则直接写出:
xi=|Ai||A|(i=1,…,N)(2)(2)xi=|Ai||A|(i=1,…,N)
其中AiAi是把AA的第ii列替换为bb而来。
例如:解方程组
令式 1中A=(21−13)A=(21−13),b=(45)b=(45),求解方程组。
解:|A|=7|A|=7,|A1|=∣∣∣4153∣∣∣=7|A1|=|4153|=7,|A2|=∣∣∣24−15∣∣∣=14|A2|=|24−15|=14。代入式 2得x=(12)x=(12)。
在数值计算时,克拉默法则解方程组效率较低,直接用高斯消元法求逆矩阵高斯消元法求逆矩阵会更快。
推论1)n元齐次线性方程组有惟一零解的充要条件是系数行列式不等于零,系数矩阵可逆(矩阵可逆=矩阵非奇异=矩阵对应的行列式不为0=满秩=行列向量线性无关);
2)n元齐次线性方程组有非零解的充要条件是系数行列式等于零。
xml法则总结
1.克莱姆法则的重要理论价值:
1)研究了方程组的系数与方程组解的存在性与惟一性关系;
2)与其在计算方面的做用相比,克莱姆法则更具备重大的理论价值。(通常没有计算价值,计算量较大,复杂度过高)
2.应用克莱姆法则判断具备N个方程、N个未知数的线性方程组的解:
1)当方程组的系数行列式不等于零时,则方程组有解,且具备惟一的解;
2)若是方程组无解或者有两个不一样的解,那么方程组的系数行列式一定等于零;
3)克莱姆法则不单单适用于实数域,它在任何域上面均可以成立。
3.克莱姆法则的局限性:
1)当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效;
2)运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式。
不确定的情况
1.当方程组没有解时,称为方程组不兼容或不一致,当存在多个解决方案时,称为不确定性。对于线性方程,不确定的系统将具有无穷多的解(如果它在无限域上),因为解可以用一个或多个可以取任意值的参数来表示。
2.克拉默规则适用于系数行列式非零的情况。在2×2的情况下,如果系数行列式为零,则如果分子决定因子为非零,则系统不兼容,如果分子决定因素为零,则系统不兼容。
3.对于3×3或更高的系统,当系数行列式等于零时,唯一可以说的是,如果任何分子决定因素是非零的,那么系统必须是不兼容的。然而,将所有决定因素置零都不意味着系统是不确定的。 3×3系统x + y + z = 1,x + y + z = 2,x + y + z = 3的一个简单的例子,其中所有决定因素消失(等于零)但系统仍然不兼容。
克拉默法则适用于变量和方程数目相等的线性方程组。克莱姆法则是线性代数中一个关于求解线性方程组的定理,研究了方程组的系数与方程组解的存在性与唯一性关系;与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值。
克拉默法则怎么用
克拉默法则解方程组过程:先求系数行列式,再求各未知数对应的行列式,相除得到方程的解。
应用克拉默法则判断具有N个方程、N个未知数的线性方程组的解:
(1)当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解;
(2)如果方程组无解或者有两个不同的解,那么方程组的系数行列式必定等于零
(3)克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。
克莱姆法则的局限性:
(1):当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效。
(2):运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式。
克拉默法则产生时间:这项法则是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的。
作者介绍:克莱姆(Cramer,Gabriel,瑞士数学家 1704-1752)克莱姆1704年7月31日生于日内瓦,早年在日内瓦读书,1724 年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自 1727年进行为期两年的旅行访学。在巴塞尔与约翰.伯努利、欧拉等人学习交流,结为挚友。后又到英国、荷兰、法国等地拜见许多数学名家,回国后在与他们的长期通信 中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。
作者成就:主要著作是《代数曲线的分析引论》(1750),首先定义了正则、非正则、超越曲线和无理曲线等概念,第一次正式引入坐标系的纵轴(Y轴),然后讨论曲线变换,并依据曲线方程的阶数将曲线进行分类。为了确定经过5 个点的一般二次曲线的系数,应用了著名的“克莱姆法则”,即由线性方程组的系数确定方程组解的表达式。该法则于1729年由英国数学家马克劳林得到,1748年发表,但克莱姆的优越符号使之流传。
克莱姆的介绍
G.克莱姆(Cramer, Gabriel, 1704.7.31-1752.1.4)瑞士数学家。生于日内瓦。卒于法国塞兹河畔巴尼奥勒。1早年在日内瓦读书,1724 年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。
克莱默法则是什么?
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。
对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的。
相关信息:
一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的。使用克莱姆法则求线性方程组的解的算法时间复杂度依赖于矩阵行列式的算法复杂度O(f(n)),其复杂度为O(n·f(n)),一般没有计算价值,复杂度太高。
对具体的数字线性方程组,当未知数较多时往往可用计算机来求解。用计算机求解线性方程组目前已经有了一整套成熟的方法。
克拉美 是一家什么样的公司?
是钻石零售的公司。
每克拉美成立于2010年1月,是国内首家专业的全渠道钻石零售品牌,通过“网络+实体”的运营模式,为广大消费者提供钻石镶嵌首饰、钻石裸石、钻石定制、钻石投资等产品及服务。
自2010年开业以来,便获得中国珠宝玉石首饰行业协会指定放心示范商场、国家珠宝玉石质量监督检验中心驻点商场、中国保护消费者基金会推介的全国重承诺守信用消费者放心单位等荣誉称号。
独创的钻石零售模式,通过专业正规的采购渠道从全球采购钻石,减少中间商环节,以殷切可靠、高效益的经营理念为广大消费者带来真正的实惠。
商场销售的每一件钻石商品都有国家珠宝玉石质量监督检验中心权威出具的国检证书,可以在权威机构官网上查询产品详细鉴定品质,严格确保产品品质。
发展历程
2010年1月1日北京蓝色港湾旗舰店正式开业,开创量贩式钻石销售模式。
2010年12月18日北京大钟寺中坤广场店正式开业,标志着每克拉美踏上连锁扩张之路。
2010年9月24日每克拉美携手中国儿童少年基金会设立“每克拉美儿童求助专项基金”。
2011年6月19日每克拉美携手中国儿童少年基金会成立童心璀璨公益联盟。
2011年7月16日每克拉美非常完美演唱会打造华语乐坛绝无仅有的一场视听盛宴,张惠妹、孙燕姿、林忆莲、莫文蔚4位钻石级天后歌手联袂参演。
2011年7月16日北京翠微路凯德MALL店正式开业,完成北京市场三角布局。
2011年11月19日重庆星光时代广场店正式开业,拉开每克拉美全国连锁扩张序幕。
2012年1月 14日大连佳兆广场店正式开业,成为每克拉美布局东北第一站。
2012年7月18日每克拉美钻石网正式上线运营,开启钻石全渠道零售新时代。
2012年7月28日沈阳新世界百汇店正式开业,进一步延伸东北布局。
2012年9月29日西安大唐西市店正式开业,每克拉美登陆西北市场。
参考资料来源:百度百科-每克拉美
用Cramer法则解下列方程组
本文发布于:2023-02-28 20:34:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167768514386549.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:cramer(cramer's V).doc
本文 PDF 下载地址:cramer(cramer's V).pdf
留言与评论(共有 0 条评论) |