数控技术毕业论文总结
数控技术毕业论文总结
1.数控编程与其开展
数控编程是U前CAD/CAPP/CAM系统中最能明显发挥效益的环节之一,其在实现
设计加工自动化、提高加工精度和加工质量、缩短产品研制周期等方面发挥着重要作
用。在诸如航空工业、汽车工业等领域有着大量的应用。由于生产实际的强烈需求,
国内外都对数控编程技术进行了广泛的研究,并取得了丰硕成果。下面就对数控编程
及其开展作一些介绍。
1.1数控编程的根本概念数控编程是从零件图纸到获得数控加工程序的全过程。
它的主要任务是计算加匸走刀中的刀位点(cutterlocationpoint简称CL点)。刀位点
一般取为刀具轴线与刀具外表的交点,多轴加工中还要给出刀轴矢量。
1.2数控编程技术的开展概况
为了解决数控加工中的程序编制问题,50年代,MIT设计了一种专门用于机械零
件数控加工程序编制的语言,称为APT(AutomaticallyProgrammedTool)。其后,
APT儿经开展,形成了诸如(算法改良,增加多坐标曲面加工编
程功能)APTAC(Advancedcontouring),APT/SS(SculpturedSurface)等先进版。
采用APT语言编制数控程序具有程序简炼,走刀控制灵活等优点,使数控加工编
程从面向机床指令的“汇编语言〞级,上升到面向儿何元素.APT仍有许多不便之处:
采用语言定义零件儿何形状,难以描述复杂的儿何形状,缺乏儿何直观性;缺少对零
件形状、刀具运动轨迹的直观图形显示和刀具轨迹的验证手段;难以和CAD数据库和
CAPP系统有效连接;不容易作到高度的自动化,集成化。
针对APT语言的缺点,1978年,法国达索飞机公司开始开发集三维设讣、分析、
NC加工一体化的系统,称为为CATIAo随后很快出现了象EUCLID,UGII,
INTERGRAPH,Pro/Engineering,MasterCAM及NPU/GNCP等系统,这些系统都有效
的解决了儿何造型、零件儿何形状的显示,交互设计、修改及刀具轨迹生成,走刀过
程的仿真显示、验证等问题,推动了CAD和CAM向一体化方向开展。
到了80年代,在CAD/CAM—体化概念的根底上,逐步形成了计算机集成制造系
统(CIMS)及并行工程(CE)的概念。□前,为了适应CIMS及CE开展的需要,数控编程
系统正向集成化和智能化方向开展。
在集成化方面,以开发STEP(StandardfortheExchangeofProductModelData)
标准的参数化特征造型系统为主,LI前已进行了大量卓有成效的匸作,是国内外开发
的热点;在智能化方面,工作刚刚开始,还有待我们去努力I□开式冲压滚针轴承
HN2021FAG止推轴承座BND3234-H-C-T-AF-STSPW25-INA液压杆端轴承
GIHRK80-D0QJ244-N2-MPA-C3FAG止推轴承座BND3080-Z-T-BL-SKWE15-G3-V4
NUP312-E-TVP2FAG球面滚子轴承22214-E1INA滚针和保持架组件K40X45X13中国
机械匸程市场上海世邦机器超前开展模式带动矿山行业新走向机械工程城镇中国投资
推动多点支持丄程机械再迎开展良机东盟我市印尼厦门厦丄全系列产品赴印尼参展剑
指东盟市场瑞安市公司零部件瑞安中建零部件通过IS0/TS16949:2021体系认证机床
沈阳中国企业沈阳机床真相:一场深刻的变革已在内部酝酿今年钢材新产品U标龙工
首季产品销量全面急增涨价逾2%缸体柱塞磨损间隙汽车起重机用75泵的修复沥青磨
削丄艺磨盘剪切机和磨机在改性沥青成套设备中的应用.
2.人工智能的开展和应用
近年来,随着计算机技术的迅猛开展和日益广泛的应用,自然地会提出人类智力活
动能不能由计算机来实现的问题。儿十年来,人们一向把计算机当作是只能以极快地、
熟练地、准确地运算数字的机器。
但是在当今世界要解决的问题并不完全是数值计算,像语言的理解和翻译、图形和
声音的识别、决策管理等都不属于数值计算,特别像医疗诊断要有专门的特有的经验和
知识的医师才能作岀正确的诊断。这就要求计算机能从“数据处理〞扩•展到还能“知
识处理〞的范畴。计算机能力范畴的转化是导至“人工智能〞快速开展的重要因素。
2.1人工智能的定义
著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定
义:“人工智能是关于知识的学科一一怎样表示知识以及怎样获得知识并使用知识的科
学。〞而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算
机去做过去只有人才能做的智能工作。〞
这些说法反映了人工智能学科的根本思想和根本内容。即人工智能是研究人类智能
活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智
力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的根
本理论、方法和技术。
人匸智能〔ArtificialIntelligence,简称AI〕是计算机学科的一个分支,二
十世纪七十年代以来被称为世界三大尖端技术之一〔空间技术、能源技术、人工智
能〕。也被认为是二十一世纪〔基因工程、纳米科学、人工智能〕三大尖端技术之
一。这是因为近三十年来它获得了迅速的开展,在很多学科领域都获得了广泛应用,
并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都
已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为〔如学习、推理、思
考、规划等〕的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算
机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和
语言学等学科。
可以说儿乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的
范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技
术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考
虑形象思维、灵感思维才能促进人工智能的突破性的开展,数学常被认为是多种学科的
根底科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅
在标准逻辑、模糊数学等范用发挥作用,数学进入人工智能学科,它们将互相促进而更
快地开展。从实用观点来看,人工智能是一门知识工程学:以知识为对象,研究知识的
获取、知识的表示方法和知识的使用。
2.2计算机与智能
通常我们用计算机,不仅要告诉计算机,要做什么,还必须详细地、正确地告诉计
算机怎么做。也就是说,人们要根据任务的要求,以适当的计算机语言,编制针对该任
务的应用程序,才能应用计算机完成此项任务。这样实际上是在人完全控制计算机完成
的,是谈不上计算机有“智能〞。
大家都知道,世界国际象棋棋王卡斯帕罗夫与美国IBM公司的RS/6000〔深蓝〕计
算机系统于1997年5月11日进行了六局“人机大战〞,结果“深蓝〞以3.5比2.5的
总比分获胜。比赛结束了给人们留下了深刻的思考;下棋要获胜要求选手要有很强的思维
能力、记忆能力、丰富的下棋经验,还得及时作出反映,迅速进行有效的处理,否那么
一着出错满皆输,这显然是个“智能〞问题。
尽管开发“深蓝〞计算机的IBM专家也认为它离智能汁算机还相差其远,但它以高
速的并行的计算能力〔2rl08步/秒棋的计算速度〕。实现了人类智力的计•算机上的局
部模拟。从字面上看,“人工智能〞就是用人工的方法在计算机上实现人的智能,或者
说是人们使计算机具有类似于人的智能。
2.3智能与知识
在20世纪70年代以后,在许多国家都相继开展了人工智能的研究,山于当时对实
现机器智能理解得过于容易和片面,认为只要一些推理的定律加上强大的讣算机就能有
专家的水平和超人的能力。
这样,虽然也获得一定成果,但问题也跟着出现了,例如机器翻译当时人们往往认
为只要用一部双向词典及词法知识,就能实现两种语言文字的互译,其实完全不是这么
一回事,例如,把英语句子"Timeflieslikeanarrown〔光阴似箭〕翻译成日语,
然后再译回英语,竟然成为“苍蝇喜欢箭〞;当把英语“Thespiritiswillingbut
thefleshisweakn(心有余而力缺乏)译成俄语后,再译回来竟变成"Thewineis
goodbutthemeatisspoiled"(酒是好的但肉已变质)。
在其它方面也都遇到这样或者那样的困难。这时,本来对人工智能抱疑心态度的
人提出指责,甚至把人工智能说成是“骗局〞、“庸人自扰〞,有些国家还削减人工智
能的研究经费,一时人工智能的研究进入了低潮。
然而,人工智能研究的先驱者们没有放弃,而是经过认真的反思、总结经验和教
训,认识到人的智能表现在人能学习知识,有了知识,能了解、运用已有的知识。正向
思维科学所说“智能的核心是思维,人的一切智慧或智能都来自大脑思维活动,人类的
一切知识都是人们思维的产物。〞“一个系统之所以有智能是因为它具有可运用的知
识。〞
要让计算机“聪明〞起来,首先要解决计算机如何学会一些必要知识,以及如何
运用学到的知识问题。只是对一般事物的思维规律进行探索是不可能解决较高层次问题
的。人工智能研究的开展应当改变为以知识为中心来进行。
自从人工智能转向以知识为中心进行研究以来,以专家知识为根底开发的专家系
统在许多领域里获得成功,例如:地矿勘探专家系统(PROSPECTOR)拥有13种矿藏知
识,能根据岩石标本及地质勘探数据对矿产资源进行估计和预测,能对矿床分布、储藏
量、品位、开采价值等进行推断,制定合理的开采方案,成功地找到了超亿美元的钳
矿。
乂如专家系统(MYCIN)能识别51种病菌,正确使用23种抗菌素,可协助医生诊
断、治疗细菌感染性血液病,为患者提供最正确处方,成功地处理了数口个病例。
它还通过以下的测试:在互相隔离的情况下,用MYCIN系统和九位斯坦福大学医
学院医生,分别对十名不清楚感染源的患者进行诊断和处方,山八位专家进行评判,结
果是MYCIN和三位医生所开出的处方对症有效;而在是否对其它可能的病原体也有效而
且用药乂不过量方面,MYCIN那么胜过了九位医生。显示出较高的水平。
专家系统的成功,充分说明知识是智能的根底,人工智能的研究必须以知识为中
心来进行。山于知识的表示、利用、获取等的研究都取得较大的进展。因而,人工智能
的研究得以解决了许多理论和技术上问题。
2.4人工智能研究的目标
1950年英国数学家图灵(,1912—1954)发表了〞计算机与智能〞
的论文中提出著名的“图灵测试〞,形象地提岀人工智能应该到达的智能标准;图灵在
这篇论文中认为“不要问一个机器是否能思维,而是要看它能否通过以下的测试;让人
和机器分别位于两个房间,他们只可通话,不能互相看见。
通过对话,如果人的一方不能区分对方是人还是机器,那么就可以认为那台机器
到达了人类智能的水平。图灵为此特地设计了被称为“图灵梦想〞的对话。在这段对
话中“询问者〞代表人,“智者〞代表机器,并且假定他们都读过狄更斯(C.
Dickens)的著名小说?匹克威克外传?,对话内容如下:
询问者:在14行诗的首行是“你如同夏日〞,你不觉得“春日〞更好吗?智者:
它不合韵。
询问者:"冬日〞如何?它可完全合韵的。
智者:它确是合韵,但没有人愿意被比作“冬日〞。
询问者:你不是说过匹克威克先生让你想起圣诞节吗?
智者:是的。
询问者:圣诞节是冬天的一个日子,我想匹克威克先生对这个比喻不会介意吧。
智者:我认为您不够严谨,“冬日〞指的是一般冬天的日子,而不是某个特别的日
子,如圣诞节。
从上面的对话可以看出,能满足这样的要求,要求计算机不仅能模拟而且可以延伸、
扩展人的智能,到达其至超过人类智能的水平,在口询是难以到达的,它是人工智能研
究的根本目标。
人工智能研究的近期LI标;是使现有的计算机不仅能做一般的数值计算及非数值
信息的数据处理,而且能运用知识处理问题,能模拟人类的局部智能行为。按照这一
口标,根据现行的计算机的特点研究实现智能的有关理论、技术和方法,建立相应的
智能系统。例如LI前研究开发的专家系统,机器翻译系统、模式识别系统、机器学习
系统、机器人等。
2.5人工智能的研究领域
□前,人工智能的研究是与具体领域相结合进行的。根本上有如下领域;专家系统,
专家系统是依靠人类专家已有的知识建立起来的知识系统,口前专家系统是人工智能研
究中开展较早、最活泼、成效最多的领域,广泛应用于医疗诊断、地质勘探、石油化工、
军事、文化教育等各方面。它是在特定的领域内具有相应的知识和经验的程序系统,它
应用人工智能技术、模拟人类专家解决问题时的思维过程,来求解领域内的各种问题,
到达或接近专家的水平。
2.6机器学习
要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整
理,并且表示为计算机可以接受、处理的方式输入讣算机。另一种是使讣算机本身有
获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这
种方式称为机器学习。
机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维
的过程;和机器学习的方法;以及建立针对具体任务的学习系统。
机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学
科根底上的。依赖于这些学科而共同开展。U前已经取得很大的进展,但还没有能完全
解决问题。
2.7模式识别
模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识
别。如识别物体、地形、图象、字体〔如签字〕等。在日常生活各方面以及军事上都
有广阔的用途。近年来迅速开展起来应用模糊数学模式、人工神经网络模式的方法逐
渐取代传统的用统讣模式和结构模式的识别方法。特别神经网络方法在模式识别中取
得较大进展。
2.8理解自然语言
计算机如能“听懂〞人的语言〔如汉语、英语等〕,便可以直接用口语操作计算
机,这将给人们带极大的便利。计算机理解自然语言的研究有以下三个H标:一是计
算机能正确理解人类的自然语言输入的信息,并能正确答复〔或响应〕输入的信息。
二是计算机对输入的信息能产生相应的摘要,而且复述输入的•内容。三是计算机能把
输入的自然语言翻译成要求的列一种语言,如将汉语译成英语或将英语译成汉语等。
目前,研究计算机进行文字或语言的自动翻译,人们作了大量的尝试,还没有找到最
正确的方法,有待于更进一步深入探索。
2.9机器人学
机器人是一种能模拟人的行为的机械,对它的研究经历了三代的开展过程:第一
代〔程序控制〕机器人:这种机器人一般是按以下二种方式“学会〞工作的;一种是山
设计师预先按丄作流程编写好程序存贮在机器人的内部存储器,在程序控制下工作。
另一种是被称为“示教一再现〞方式,这种方式是在机器人第一次执行任务之前,由
技术人员引导机器人操作,机器人将整个操作过程一步一步地记录下来,每一步操作
都表示为指令。示教结束后,机器人按指令顺序完成工作〔即再现〕。如任务或环境
有了改变,要重新进行程序设计。这种机器人能尽心尽责的在机床、熔炉、焊机、生
产线上工作。日前商品化、实用化的机器人大都属于这一类。
这种机器人最大的缺点是它只能刻板地按程序完成匸作,环境稍有变化〔如加工
物品略有倾斜〕就会出问题,其至发生危险,这是山于它没有感觉功能,在日本曾发
生过机器人把现场的一个工人抓起来塞到刀具下面的情况。
第二代〔自适应〕机器人:这种机器人配备有相应的感觉传感器〔如视觉、听觉、
触觉传感器等〕,能取得作业环境、操作对象等简单的信息,并山机器人体内的计算机
进行分析、处理,控制机器人的动作。虽然第二代机器人具有一些初级的智能,但还需
要技术人员协调工作。目前已经有了一些商品化的产品。
第三代〔智能〕机器人:智能机器人具有类似于人的智能,它装备了高灵敏度的传
感器,因而具有超过一般人的视觉、听觉、嗅觉、触觉的能力,能对感知的信息进行分
析,控制自己的行为,处理环境发生的变化,完成交给的各种复杂、困难的任务。而且
有自我学习、归纳、总结、提高已掌握知识的能力。口前研制的智能机器人大都只具有
局部的智能,和真正的意义上的智能机器人,还差得很远。
2.10智能决策支持系统
决策支持系统是属于管理科学的范畴,它与“知识一智能〞有着极其密切的关系。
在80年代以来专家系统在许多方面取得成功,将人工智能中特别是智能和知识处理技
术应用于决策支持系统,扩大了决策支持系统的应用范圉,提高了系统解决问题的能力,
这就成为智能决策支持系统。
2.11人工神经网络
人工神经网络是在研究人脑的奥秘中得到启发,试图用大量的处理单元〔人工神
经元、处理元件、电子元件等〕模仿人脑神经系统工程结构和工作机理。在人工神经
网络中,信息的处理是山神经元之间的相互作用来实现的,知识与信息的存储表现为
网络元件互连间分布式的物理联系,网络的学习和识别取决于和神经元连接权值的动
态演化过程。
多年来,人工神经网络的研究取得了较大的进展,成为具有一种独特风格的信息
处理学科。当然L1前的研究还只是一些简单的人工神经网络模型。要建立起一套完整
的理论和技术系统,需要作出更多努力和探讨。然而人工神经网络已经成为人工智能
中极其重要的一个研究领域。
3.全文总结
人类经过五千的开展进入了基于知识的“知识经济〞。人类社会空前地高速发展。
知识是智能的根底,知识只有转化为智能才能发挥作用,知识无限的积累,智能也就将
在人类社会起越来越大的作用,更有人提出:知识经济的进一步开展将是“智能经济〞。
“智能经济〞是基于“广义智能〞的经济,“广义智能〞包含:人的智能、人工
智能以及人和智能机器相结合的“集成智能〞O可以想象基于广义智能的“智能经济〞
将比基于知识的“知识经济〞将具有更高的智能水平,更高更快开展速度。
本文发布于:2023-03-01 23:31:41,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167768470189676.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:数控毕业论文.doc
本文 PDF 下载地址:数控毕业论文.pdf
留言与评论(共有 0 条评论) |