盘点世界十大天体浴场图片 男女全裸尽情狂欢(2)
为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
在自然界和宇宙中有三大最稳定结构:球体、三角形、三棱体,还有六大次稳定结构:椭球体(鹅卵形)、圆柱体、椭圆柱体、三棱柱、六边形、六棱柱。
自然界和宇宙中之所以会存在这些最稳定结构或次稳定结构,主要是源自如下三大自然法则:
1.能耗最低法则。根据宇宙大爆炸理论,自然界和宇宙中的所有物质、元素、天体等都是“奇点”中的能量转化而来。而形成上述形体所消耗的能量都比形成相应的多边体、多棱柱的能耗要小,最终形成的上述形体的体积也都比相应的多边体、多棱柱的体积要小。
2.结构最稳定法则。上述形体的结构都比相应的多边体、多棱柱结构稳定,不易被自然力量或能量所破坏。
3.力学受力最均匀法则。上述最稳定结构中的任何一种都能承受来自空间360 的作用力,都能产生基本一致的反作用力。上述次稳定结构中的任何一种也都能承受来自空间360 的作用力,虽然产生的反作用力不一致,但其差异与其它相应形体相比也是最小的。
河里的鹅卵石虽然也遵从上述三大自然法则,但其形成过程与天体不一样。天体是直接由能量转化而来,首先决定天体球体的因素是“能耗最低法则”;而河里的鹅卵石是河水冲刷、滚动摩擦和滚动撞击而形成,所以首先决定鹅卵石椭球体形状的自然法则是“结构最稳定法则”和“力学受力最均匀法则”。
为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
尽管鹅卵石都没可能像天体那样比较标准的球形,但至少也是圆润有余,不过我们要了解一下的是鹅卵石本身依附于行星,而且必须是在含有液态水行星的河流或者浪花冲刷下才能形成,与行星的球形似乎没有任何关系,不过既然有了个无聊的问题,那么不妨就来做个简单的了解!
一、鹅卵石是怎么形成的?
河滩上的鹅卵石,其实要找到一颗滚圆的鹅卵石还是非常困难的,因为河流冲刷只是磨掉了石头的棱角而已,并不能将石头往球形方向塑形,除非这颗石头初期的形状非常正,那么未来接近球形的概率会高一些!
我们在河滩上看到鹅卵石就是由水流的搬运翻滚碰撞摩擦中逐渐将石头的棱角磨去的,当然除了河流还有海滩上的海浪,尽管过程会稍有区别,但结果并无多少差别!当然还有一个过程也能形成鹅卵石!
这是形成鹅卵石的另一个途径,被水浸泡的矿物硬化后表层受到风化作用脱落露出内部的硬核,这是最近发现的火星鹅卵石成因!
二、天体是怎么形成的?
水在没有引力平衡的状态下会呈现完美的球形,当然上图的球体还有一些动态变形,那时候因为气流影响和不平衡力影响所致!天体在引力平衡的宇宙中成型时候,其刚性会被强大的引力坍缩能所克服,逐渐趋向于一个流体球形,这并不需要碰撞成型,反而碰撞会破坏这个形状!
这和恒星过程其实类似,至少在恒星的原始积累时是一致的!因此我们并不需要担心太阳系内的天体会玩碰碰车,这是不可能发生的事情,但流星或者彗星类的撞击也许会发生,比如1994年的苏梅克列韦九彗星撞击木星,但却不是为为木星塑形来的,只是给木星增加质量了!
最后来看看太阳系的形成动图,当然有些夸张,不过大致也就是这样!
首先我们来分析一下这个问题,细思极恐的地方在哪里?题主的意思指得是你看太阳系内的八大行星包括太阳在内都是接近于正圆的,其他恒星系的情况也是如此。而我们日常生活中在河边看到的鹅卵石,也很多都是有圆弧的。那么细思一下我们的宇宙会是一条河,而天体就是鹅卵石。这下你感觉到恐怖了吧?
说实话个人感觉这一点都不恐怖,甚至感觉有点好笑。完全没有关系的两个东西也能强拉硬拽到一起进行比较。再说了宇宙中的天体如果不论大小只看数量,那么非圆类的天体还是占据大多数的。就拿太阳系内的天体来说,小行星的数量有数十万颗,几乎没有是正圆的,大多数都是形态各异。比较典型的如2017年闯入太阳系的星际天体-奥陌陌,完全的雪茄形状跟圆都不沾边。
当然天体质量越大一般都比较接近于正圆,这可以看出来天体的形状和引力有着很重要的联系。在天体形成后引力的无差别踏缩作用,会让天体趋于圆形,而质量越小的天体引力的作用效果越不明显。同时天体的质量较大和其他天体之间的引力作用,例如月球绕着地球转在潮汐力作用下,月球只有一面正对着地球,这被称为潮汐锁定,这个过程也对天体性状的塑造起作用。
而鹅卵石的形成原理就更简单了,在水流的冲击下表面区域完整,而小鹅卵石会被水流推着滚动着“跑”,时间长了自然而然形成光滑圆润的表面。但是天体的圆形冲击作用就什么关联了,因此也联系不到一起去。
为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
在我们观看有关宇宙的记录片或者宇宙天体的图片时,估计都会发现一个有趣的现象,那就是这些天体似乎被一种无名的力量,驱使它们都拥有着完美的球形,然后就像小时候玩的玻璃球那样,边自转边围绕着上一层级的引力中心旋转,整个宇宙表现出秩序井然的状态。那么,为什么这些天体看上去都是球形的呢?
比如,我们所在的地球,以及太阳系内的各大行星,从外观上看似乎都是呈现球形的状态,更不用说银河系内其它更大质量的恒星或者黑洞了,有人因此将这种情况与河中的鹅卵石相比较,认为宇宙空间和流水环境可以进行类比,都在被一种看不见的力量的侵蚀着,通过漫长的时间,棱棱角角都被“磨平”了,如果按照这样的设想,我们的宇宙空间还真的让人有种细思极恐的感觉。不过,这种类比是站不住脚的,宇宙空间虽然并非真空,但是星际气体的密度异常微小,每立方厘米的质子数量,平均只能达到零点几个的水平,这无论是与流水中的水分子密度,还是与大气层中大气分子的密度相比,差距都有很多个数量级,依靠太空环境中的摩擦,而使天体变为球形根本不可能,如果有这么大的摩擦力,星体的公转和自转早已经在这种明显的阻碍作用下发生停滞了,哪里还能有现在星系的稳定运行呢?
我们现在看到外观呈现球形的天体,都是质量和体积较大的星体。大家不要忘了,除了我们直接可以观测到的恒星、行星、卫星等这些质量较大的星体之外,宇宙空间中还存在着数量更多的小行星,比如仅在太阳系内,在木星和火星之间就存在着数百万颗小行星,在海王星轨道之外的柯伊件带内,除了一些质量较大的矮行星以外,仍然有着数不胜数的小行星,这些小行星绝大部分的外观,并非是标准的球形,甚至连规则形状都谈不上,长得都比较“随意”,棱角都非常鲜明。就像前几年闯入太阳系的小行星奥陌陌,其形状更加离谱,呈现的是一个长条形,长宽比例达到了惊人的10:1,因此有人调侃这是不是一个“伪装”成小行星的外星飞船。
对于大质量星体来说,其外形的塑造与引力密不可分。引力作为宇宙中4种基本作用力之一,虽然是一种长程力,但是力的作用效果是4种力中最弱的,因此对于质量较小的物体来说,引力的相互作用并不会对物体的外形产生明显影响,但是对于宏观的宇宙大尺度来说,引力的作用就非常明显了,无论是恒星的诞生、行星的聚合、星体的运行、黑洞的形成等等,引力在其中都发挥着重要作用。
对于质量极大的黑洞来说,其强大的引力作用,使得在其史瓦西半径以内,连光线都无法逃脱出去,由于引力具有各向同性,因此黑洞就形成了非常接近球形的事件视界,我们无法通过任何观测手段来观测事件视界以内的任何信息,只能通过引力透镜、吸积盘、粒子流喷射等方法间接观测到。
对于恒星以及行星、卫星来说,它们的形成都得益于不断地吸收周围星际物质,这些星际物质在聚集过程中,受到引力的作用持续进行着向内坍缩,由于在吸聚物质的过程中,物质来源基本上也是从宇宙空间的各个方向均匀进行的,因此坍缩现象也基本是均匀地发生在星体表面,从而在结果上也表现出星体形状的规则性,即最终呈现的是球形的状态。只不过,恒星、行星和卫星在它们所吸聚物质的数量上有着巨大的差别,恒星产生的时间较早,所吸聚的星际物质更多,在物质坍缩过程中内核温度更高、压力更大,在量子隧穿效应的作用下,激发了核聚变反应,行星和卫星的聚合物质来源,是恒星形成之后剩余的“边角料”,内核的温度不足以支撑核聚变的条件,只能依据聚合物质的不同形成属性不同的固态行星、气态行星以及围绕它们运行的卫星。
据科学家们测算,当星体的半径达到500公里以上级别时,其外层物质因引力作用引发的坍缩效应,就会突破星体表面的结构应力,使星体表面朝着向内核收缩的趋势,从而密度进一步增大、表面进一步平滑,最终达到星体流体静力学平衡的状态。而一些拥有大气层的行星,因星体自转产生的大气流动,也会对星体表面的物体产生侵蚀作用,在与星体内部地质作用的共同作用下,持续发生着侵蚀、搬运、堆积等作用,一起塑造着星体的表面状态。
而星体的尺寸大小,如果没有突破500公里这个界限,那么星体表面所受到星体核心的引力作用,将很难引发自身结构的改变,于是就有很大的几率保持着其原来的“外貌”,无论是星际物质聚合的“半成品”,还是星体之间碰撞之后的碎片,这些小型天体在形成以后,将会在很长时间保持这个形态,除非再受到巨大的外力作用。
实际上,无论是恒星也好,还是行星也罢,这些大质量天体虽然外形上表现出球体的形态,但都不是标准的球体,因为这些天体本身在吸聚物质角动量继承的基础上,都以不同的速度发生着自转,沿着自转赤道处其线速度值要比其它区域大,因此为了维持运行稳定性,在赤道处就会发生物质的“轻微聚集”现象,使得星体成为近似球体的椭球体,自转速度越快这种差距就越大,而且气态行星比固态行星要明显,比如地球的赤道半径就比两极半径长21公里,土星赤道半径比两极半径长5000多公里。另外,天体与天体之间由引力引发的“潮汐”现象,也会不同程度地影响着星体的外观和自转速度。
这也细思极恐?哪题主害怕的事情也太多了吧。宇宙天体都是球形是引力的作用,而河滩上的鹅卵石是水流冲刷形成的,形成原因差别很大,没有什么相似性。
物体的形状多种多样,是因为一般情况下物体之间的引力不能抵消物质分子之间的作用力,鹅卵石的形成是由于水流冲刷、水中悬浮物、被冲起的沙砾长期摩擦的结果。而物体大到行星这种层次,引力作用就十分强了,使物体体积质量大到一定程度后,下部承受的上部物体质量的压力过大导致物体承受能力,最终导致山体断裂崩塌,而引力只与质量和距离有关,是面向四面八方的,所以长期作用的结果就使天体的外形接近球形,不过像地球还是受到自转和太阳引力的影响,赤道附近是稍微突起的。
为嘛细思极恐,想了一会大概觉得题主是认为所有的天体都像河边的鹅卵石一样,宇宙没准只是一个更高维度世界河流旁边的石堆。抱歉,现在真的没办法解释这样的事情,用现有科学认识的“已知”去推测宇宙的“未知”的话,宇宙不可能是河流,天体也不是鹅卵石,两者形成的原因是不同的,宇宙物质也不像河流物质一样随着在水和引力等多种因素作用下移动,而是在引力作用下运动。
这事没有啥好害怕的吧 。咱也不需要脑补出一个更高维的世界,观测中没法证实,从已知推测未知,宇宙就是在引力作用下运行不辍,与河流没有什么相似性,心放肚子里吧。
事实上宇宙中绝大绝大绝大绝大……多数天体——嗯,我不知道要用多少个绝大才能准确形容——不是球形。
所谓天体,就是太空中的物体,我们看到的似乎都是球形——太阳、月亮,远处的行星,更为遥远的恒星,似乎圆得天经地义,地老天荒,完美得让人怦然心动,黯然落泪——估计每一个初上太空的人,没有不被震撼到落泪的。
然而你的眼睛如果能放大数千倍、数万倍,看到隐然于浩瀚太空的更多物体,你就会发现,在黑暗无垠中还有无数的天体,包括小行星、彗星等,在寂寥的太空中闪烁——这些都是天文学意义上的天体,但凡不属于地球上的物体,大抵都可称之为天体。
所以在太阳系里,目前发现的实际只有太阳、八大行星、矮行星以及一些行星的卫星等几十颗天体是球形,而更多的天体——火星和木星轨道之间的小行星带,柯伊伯带,离散盘,奥尔特云,里面有至少有数亿颗小行星、彗星,最大的数百公里,最小的数米、数厘米,都不是球形,从数量上来看,宇宙中绝大多数天体都不是球形。
更大的天体,比如星系和星云,星系团,超星系团,大尺度结构等等,也不是我们定义的,传统意义上的球形。只有半径超过大约500公里的小行星,行星,恒星,才可能在引力作用下,聚集成球形,质量越大,球越完美;恒星死亡后坍缩形成的白矮星、中子星以及黑洞,也是呈完美的球形。好吧,其实也不是那么完美,所有这些天体都会在形成时获得的角动量,或相互之间的引力作用,以及撞击下旋转,在离心力作用下变成椭球状——赤道处凸出,两级凹陷,即使黑洞,也不能幸免。所以从严格意义上来说,宇宙中实际上没有一个天体是完美的球形,就看你从多大的精细度来看了,毕竟完全不旋转的天体理论上是没有的。
像我们的地球,赤道处的半径就比极半径大42.8公里,而太阳则大了约12.5公里;木星、土星由于旋转较快,实际在望远镜中都可以看出它们是椭球形的;最夸张的是离 地球139光年,天空中 第九亮的恒星水委一,由于自传极快,其赤道直径比极直径竟然大了56%,分别是太阳的11.4倍和7.3倍,完全就是一个超巨型橄榄球了;而最最夸张的是轩辕十四A,它赤道处的旋转速度我们太阳的152倍,已被甩成极端的扁球体,科学家们估计它的旋转速度再快10%,就会被自己的离心力给撕得粉碎了。
我们之所以认为宇宙中天体都呈球形,是因为这种天体正好位于我们的眼睛或望远镜最容易观测的范围。比如太空中我们肉眼可见的,除了太阳、月亮、几颗行星,以及两三个星系和人造卫星外,其它的都是恒星,都是球形的物体,而望远镜能直接观测到的,也大多是这些可以发光的恒星,不能发光的小行星很难被直接看到,所以导致被观察更多、描绘更多的是这些恒星,让人误以为所有天体都是球形的了。
河里的鹅卵石和天体的形状,完全是风马牛不相及的两个概念
宇宙中的天体形状,完全由自身的性质和所处的环境决定。比如一颗巨大的行星,那么由于这种行星的形成过程是引力作用于星际物质形成,而且一般还是旋转这形成,所以自然而然的在向心力和离心力的作用下,就形成了圆形或者椭圆形。但其实也不是真正的完全光滑的圆形,比如我们的地球,远处看是很漂亮的圆形。但其实生活在地球上的我们知道,地球上面是坑坑洼洼的,根本就不平整。在看看鹅卵石,哪一个不是光不溜秋的呢?
而且,鹅卵石形成于河流、砂石摩擦作用。本来的鹅卵石并不是规则的圆形,在各种力的摩擦作用下,才磨平了棱角变得光滑了。这样的形成机理,和宇宙中天体的形成,完全是风马牛不相及的。所以,拿着鹅卵石和天体形状比,更本就没有什么意义。
不是所有的天体都是圆形的
另外,并非所有的天体都是圆形的。一些质量较小的天体,由于重力作用小,所以没有太大的离心力和向心力,其形状也就各具特色,大小不一。长条形的,坑洼型的,等等都有。所以,这些天体和鹅卵石形状上根本没有可比性。
因此,我们不能说两个事物的形状相似,就直接生拉硬套把二者联系起来。现代科学都讲究从本质上看问题,我们不能够违背这个原则。就像云彩的形状和棉花糖很像,我们总不能说云彩是某个未知生命创造的棉花糖吧?
我们的宇宙观,必须进入宇宙,而我们的认识应该高于地球上的认知。
地球控制着地球上所有的自然规律,而使人类跳不出地球上的环境来看问题,一直没有正确的宇宙观。
凡是物质都是由微小的电子和原子核组成,这个极度微小的物质形态人类看不见它的存在,但是真实的存在于宇宙中的所有天体上。
我们还是回到物理概念上来,一个物质凡是获得电子的物质带负电,凡是失去电子的物质带正电。有正负的电现象伴随而来的就是强大的南,北,极磁场。
物质在运动中,从不平衡到平衡状态下的变化,达到平衡状态的瞬间立即又向不平衡状态转换。产生一种场量的正弦函数图像,循环往复。
运动中的物体是有磁极的,它有着巨大的磁场,而中心最强,它能把中心以外的所有物体吸引到中心,聚集起来成为一个圆形,一个球型。这就告诉我们,在宇宙中,凡是只有一个中心的物体都会成为圆型,反之,圆型的物体只有一个圆心。
把非常简单的事,弄得非常复杂化就是骗人的。
看看空间站里的小实验,火在太空失重下都是圆球形。在地球上火苗被拉长,变卵形了。引力加浮力就是卵形。
星球只有球形才是原装的,其它形是后合拼的或星球碎片,还有彗星陨石不属于星球,属于气体尘埃组合体。
星球都有自己的星核,温度越高就越圆,外层有坑包,是撞击,火山喷发,地下溶岩活动形成山川峡谷。
无论是河里的鹅卵石,还是宇宙中的球形天体,其形成过程都符合基本的力学原理。
鹅卵石的形成主要归于外力 。鹅卵石是由大得多的不规则石块形成的,随着时间的推移,岩石会被风、水、太阳和其他地质过程比如板块运动侵蚀掉,大岩石分裂成更小的岩石,这个过程不断继续重复,最终小块的岩石,被同样的过程磨平,最后变成我们所说的石头和卵石。鹅卵石更有可能出现在河里或在海滩上,因为水有助于把石头翻来覆去,使它们变得更光滑。石头和鹅卵石会不断地磨损,最终变得越来越小,最终形成像沙子一样的东西。
球形天体的形成都归结于引力定律。
任何有质量的物质都会吸引其他质量单位,这个引力正比于这些质量之间距离的平方反比。因此,有限数量的均匀分布的均匀粒子会倾向于 被拉向一个共同的重心,最终 合并成一个球体。如果把这个巨大的水滴放在一个不受干扰的环境中,最终水会达到完美的平衡,这就是所谓的流体静力平衡。但是,恒星、行星和卫星可能是由气体、冰或岩石构成,万有引力只会把所有的东西拉成一个大致的球形, 行星表面仍然有不均匀的特征,比如山脉和山谷,但是 随着重力的增加,行星上的山会变矮 。
与此同时,许多其他的力量在行星和恒星的形成中起着作用。 由于不均匀性和外力,天体开始旋转,其结果是一个粗略但并非完美的球形旋转体, 天体旋转得越快,就会变得越扁。事实上,如果一个天体上的物质足够多, 自转速度 足够高,那么赤道附近的物质会被甩掉,或者在某些情况下可以形成一个圆形的卫星 。
不论天体的物质组成如何,几百公里的直径足以形成一个球形,小行星谷神星和灶神星已经具有明显的圆形。 较小质量的物体,如小行星、彗星和较小的卫星,引力较小,因此它们可能无法形成完美的球体。只有当天体足够大,具有足够的引力来产生热量并融化其核心区域成熔融岩浆时,这才成立,只有熔融岩浆的自由流动才能使物质通过重力调整成球形。
地球的内部是什么
地球内部有核、幔、壳结构。具体可以分为:岩石圈、软流圈、地幔圈、外核液体圈、固体内核圈。
1、岩石圈
对于地球岩石圈,除表面形态外,是无法直接观测到的。它主要由地球的地壳和地幔圈中上地幔的顶部组成,从固体地球表面向下穿过地震波在近33公里处所显示的第一个不连续面(莫霍面),一直延伸到软流圈为止。
2、软流圈
在距地球表面以下约100公里的上地幔中,有一个明显的地震波的低速层,这是由古登堡在1926年最早提出的,称之为软流圈,它位于上地幔的上部即B层。
3、地幔圈
地震波除了在地面以下约33公里处有一个显著的不连续面(称为莫霍面)之外,在软流圈之下,直至地球内部约2900公里深度的界面处,属于地幔圈。
4、外核液体圈
地幔圈之下就是所谓的外核液体圈,它位于地面以下约2900-5120公里深度。整个外核液体圈基本上可能是由动力学粘度很小的液体构成的,其中2900至4980公里深度称为E层,完全由液体构成。
5、固体内核圈
地球八个圈层中最靠近地心的就是所谓的固体内核圈了,它位于5120-6371公里地心处,又称为G层。根据对地震波速的探测与研究,证明G层为固体结构。
扩展资料:地球圈层分为地球外圈和地球内圈两大部分。地球外圈可进一步划分为四个基本圈层,即大气圈、水圈、生物圈和岩石圈;地球内圈可进一步划分为三个基本圈层,即地幔圈、外核液体圈和固体内核圈。
此外在地球外圈和地球内圈之间还存在一个软流圈,它是地球外圈与地球内圈之间的一个过渡圈层,位于地面以下平均深度约150公里处。这样,整个地球总共包括八个圈层,其中岩石圈、软流圈和地球内圈一起构成了所谓的固体地球。
对于地球外圈中的大气圈、水圈和生物圈,以及岩石圈的表面,一般用直接观测和测量的方法进行研究。而地球内圈,主要用地球物理的方法,例如地震学、重力学和高精度现代空间测地技术观测的反演等进行研究。
地球各圈层在分布上有一个显著的特点,即固体地球内部与表面之上的高空基本上是上下平行分布的,而在地球表面附近,各圈层则是相互渗透甚至相互重叠的,其中生物圈表现最为显著,其次是水圈。
参考资料:百度百科-地球
海浪形成的主要原因
在海边,经常可以看到翻腾的海浪。海浪是发生在海洋中的一种波动现象,很多人都好奇海浪是怎么形成的。以下就是我做的海浪形成的主要原因整理,希望对你们有用。
海浪形成的原因
海浪是海水的波动现象。
“无风不起浪”和“无风三尺浪”的说法都没有错,事实海上有风没风 都会出现波浪。通常所说的海浪,是指海洋中由风产生的波浪。包括风浪、涌浪和近岸波。无风的海面也会出现涌浪和近岸波,这大概就是人们所说“无风三尺浪”的证据,但实际上它们是由别处的风引起的海浪传播来的。广义上的海浪,还包括天体引力、海底地震、火山爆发、塌陷滑坡、大气压力变化和海水密度分布不均等外力和内力作用下,形成的海啸、风暴潮和海洋内波等。它们都会引起海水的巨大波动,这是真正意义上的无风也起浪。
海浪是海面起伏形状的传播,是水质点离开平衡位置,作周期性振动,并向一定方向传播而形成的一种波动。水质点的振动能形成动能,海浪起伏能产生势能,这两种能的累计数量是惊人的。在全球海洋中,仅风浪和涌浪的总能量相当于到达地球外侧太阳能量的一半。海浪的能量沿着海浪传播的方向滚滚向前。因而,海浪实际上又是能量的波形传播。海浪波动周期从零点几秒到数小时以上,波高从几毫米到几十米,波长从几毫米到数千千米。
风浪、涌浪和近岸波的波高几厘米到20余米,最大可达30米以上。风浪是海水受到风力的作用而产生的波动,可同时出现许多高低长短不同的波,波面较陡,波长较短,波峰附近常有浪花或片片泡沫,传播方向与风向一致。一般而言,状态相同的风作用于海面时间越长,海域范围越大,风浪就越强;当风浪达到充分成长状态时,便不再继续增大。风浪离开风吹的区域后所形成的波浪称为涌浪。根据波高大小,通常将风浪分为10个等级,将涌浪分为5个等级。0级无浪无涌,海面水平如镜;5级大浪、6级巨浪,对应4级大涌,波高2~6米;7级狂浪、8级狂涛、9级怒涛,对应5级巨涌,波高6.1米到10多米。
海洋波动是海水重要的运动形式之一。从海面到海洋内部,处处都存在着波动。大洋中如果海面宽广、风速大、风向稳定、吹刮时间长,海浪必定很强,如南北半球西风带的洋面上,常的浪涛滚滚;赤道无风带和南北半球副热带无风带海域,虽然水面开阔,但因风力微弱,风向不定,海浪一般都很小。
海浪的分类风浪
风浪,指的是在风的直接作用下产生的水面波动。涌浪,指的是风停后或风速风向突变区域内存在下来的波浪和传出风区的波浪。
近岸浪
近岸浪,指的是由外海的风浪或涌浪传到海岸附近,受地形作用而改变波动性质的海浪。
海浪是十分复杂的现象,研究海浪对海洋工程建设、海洋开发、交通航运、海洋捕捞与养殖等活动具有重大意义。
海浪谱海浪可视作由无限多个振幅不同、频率不同、方向不同、相位杂乱的组 成波组成。这些组成波便构成海浪谱。此谱描述海浪能量相对于个组成波的分布,故又名“能量谱”。它用于描述海浪内部能量相对于频率和方向的分布。为研究海浪的重要概念。通常假定海浪由许多随机的正弧波叠加而成。不同频率的组成波具有不同的振幅,从而具有不同的能量。设有圆频率ω的函数S(ω),在ω至(ω+ω)的间隔内,海浪各组成波的能量与S(ω)ω成比例,则S(ω)表示这些组成波的能量大小,它代表能量对频率的分布,故称为海浪的频谱或能谱。同样,设有一个包含组成波的圆频率ω和波向θ的函数S(ω,θ),且在ω至(ω+ω)和θ至(θ+ω)的间隔内,各组成波的能量和S(ω,θ)ωθ成比例,则S(ω,θ)代表能量对ω和θ的分布,称为海浪的方向谱。将组成波的圆频率换为波数,可得到波数谱;将ω换为2π(频率为周期的倒),得到以表示的频谱S()数。以上各种谱统称为海浪谱。
海浪谱不仅表明海浪内部由哪些组成波构成,还能给出海浪的外部特征。比如,理论上可由谱计算各种特征波高和平均周期,利用这些特征量连同波高与周期的概率密度分布,可推算海浪外观上由哪些高低长短不同的波所构成。若已知海浪的谱,海浪的内外结构都可得到描述,因此谱是非常有用的概念。事实上,海浪的研究(包括许多应用问题),大多和谱有关。频谱
在海浪谱中,风浪频谱得到最广泛的研究,因为它的应用最广,也最易于得到。但尚无基于严格理论的风浪频谱。通常p为5~7,q为2~4,在正量A和B之内。除了数值常数外,还包含风要素(如风速、风时和风区)或浪要素(如特征波高和周期)作为参量,故谱的形状随风的状态或对应的浪的状态而变化。上述两项的乘积代表的谱,在ω=0处为0,在0附近的值很小,ω增加时,它骤然增大至一个峰值,然后随频率的增大而迅速减小,在ω→∞时趋于0。这表明谱的频率范围在理论上虽为0~∞,但其显著部分却集中在谱峰附近。海面上存在的许多波,其显著部分的周期范围很小,恰和理论结果相对应。随着风速的增大,谱曲线下面的面积(从而风浪的总能量或波高)增大,峰沿低频率方向推移,表明风浪显著部分的周期增大。
从波面的记录估计谱,是获得海浪频谱的主要途径。习惯上将谱的估计 方法 分为相关函数法和快速傅氏变换算法两种。在电子计算机上计算时,后者比前者更节约时间。20世纪70年代,开始引用最大熵等方法。依此可自不多的资料估计出分辨率较高的谱,它适用于非平稳的海浪状态。
在海浪研究中已提出的频谱很多常采用的皮尔孙-莫斯科维奇谱,是60年代中期提出的,是在对充分成长的风浪记录进行谱估计和曲线的拟合时得到的,已为多数观测所证实。
60年代末,按照“北海联合海浪计划”(JONSWAP),对海浪进行了系统的观测,提出了一种频谱,其中包括分别反映能量水平、峰的频率尺度和谱形在内的5个参量。这种谱表示风浪处于成长的状态,它具有非常尖而高的峰。对Jonswap谱分析的结果表明,风浪的能量主要通过谱的中间频率部分传递,然后借波与波之间的非线性相互作用,再分别向谱的高频和低频部分传递。反映这种能量交换的谱,具有稳定的形式。利用此特性,可将谱随风的变化转换为其中的参量随风的变化,从而提供另一种海浪计算或预报的方法。
有一种半 经验 的方法,它假定海浪的某些外观特征反映其内部结构,由观测到的波高和周期间的关系,可导出海浪谱。早在50年代初提出的纽曼谱和工程中常使用的布雷奇奈德尔谱,都属此类,前者p=6,q=2;后者p=5,q=4。有些苏联作者采用具有前述形式的频谱,然后由观测资料确定其中的常数和参量。
中国学者于50年代末至60年代中期,尝试自风浪能量的摄取和消耗出发推导出谱,其中包括用风要素作为参量,从而描述谱相对于风时和风区的成长。由这些谱计算波高和周期等要素比较方便,但推导中涉及的能量计算,仍是半经验性的。
描写海浪的 句子1. 海浪不停地涌上来,撞在礁石上,留下一圈圈白色的泡沫,像给海岸镶上了玉色的花边。海浪退回去时,软软的金黄的细沙露出了海面。
2. 阵阵海风夹带着大海特有的清新和湿润,迎面扑来,把旅途的疲劳全都吹走了。
3. 贪玩的小海浪已不像白天那样汹涌澎湃,轻轻地抚摸着岸边的礁石,发出“哗哗”的响声,好像哼唱着动人的催眠曲,催人入睡。
4. 浩瀚的大海好像和天连在一起,滔滔的海水撞击着礁石,发出雷鸣般的响声。
5. 幽光粼粼,神秘莫测。海水轻轻地摇啊,摇啊,唱着催眠曲拍着鼓浪屿静静人睡……
6. 当丽日升天或夕阳欲下,就是潮涨汐落的时候,一时风狂海沸,浪花汹涌,如千军万马,奔腾呼晡,直到黄昏的时候,才风平浪静,重露出一片平静的海滩。
7. 海水荡漾着,翻起一个个浪花,慈母般地抚摸着柔和的沙滩。
8. 那泛起的浪花,多像个调皮的小弟弟,一次又一次涌到我面前来捉弄我,当我要和他握手时,他又淘气地跑开了。
9. 阵阵海浪亲吻着我的脚,好凉的水哟,带走了我的疲劳,刺激着我的心扉;好温柔的水哟,像小时候妈妈的手,把我轻轻地抚摸。
10. 顷刻间,轰轰隆隆,潮声似千声鸣谷,万雷惊涧,气势壮观极了!
11. 那大潮犹如千军万马,奔腾而来;又像饿虎群狼,咆哮而至。大潮掀起的浪涛足有几米高,夹带着泥沙像一堵墙,汹涌澎湃。
12. 那白浪翻滚的声音如同千万辆坦克同时开动,发出山崩地裂的响声,好像大地都被震得动起来。
13. 浩瀚的大海,经常是风平浪静,像熟睡的娃娃,没有一点声音;有时也会波浪滔天,像怒吼的雄狮,向岸边扑来。
14. 海像一位刚醒来的母亲,散发着温馨的气息,柔和的海浪是她嘴边哼唱的一支晨曲,海鸥就像是她的孩子,和着这曲子扇动着翅膀,在海面上绕来绕去。
15. 大海伸出她温柔的小手一一海浪,为我拂去脚印,似乎那金黄的沙滩是她满头的金发,不愿让我随意践踏她漂亮的头发。我明白了她的意思。坐在了海边的礁石上,大海好像觉得太寂寞了,又伸出小手拿出了自己的玩具——贝壳,抛向海滩,又轻轻地收回,玩得可愉快呢!
16. 层层叠叠的海涛,前推后涌地形成一个个巨浪,每个巨浪在跃起到它的最高度的一瞬间,便凌空开放一簇雪白的浪花。
17. 大海宽广壮阔,浩浩荡荡。它千变万化,有时波涛起伏,汹涌澎湃;有时又风平浪静,默默无声。
18. 没有月亮,海更增加了几分妩媚与神秘,天与海完全融合成一体:一个深蓝近乎于黑黑的世界。唯有那一排排相继涌来的浪花,给海镀上了一道道如雪的花边。
19. 湿润凉爽的海风吹过,海面上掀起了一个又一个的浪头,层层叠叠,远远望去像一行行展翅飞翔的白鹭,如千万匹脱缰狂奔的烈马,似无数条怒吼狂叫的蚊龙,“哗哗”地扑向岸来,撞击在岩石上,溅起一丈多高的浪头,绽开万朵洁白晶莹的浪花。
20. 湛蓝的夜空里,一轮满月把它清亮的光辉投到蓝墨色的海波上,海面上显出一道长长的颤动的光柱。
看了海浪还看:
1. 怎么画海浪的简笔画图片
2. 海浪形成的原因
3. 描写海面的优美句子
4. 关于描写大海的散文
5. 海浪基础知识
这张图是什么动画片的?
宇宙一共有几个星球?
本文发布于:2023-02-28 20:31:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167768154388498.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:天体海滩图片.doc
本文 PDF 下载地址:天体海滩图片.pdf
留言与评论(共有 0 条评论) |