什么是无理数

更新时间:2023-03-01 22:05:33 阅读: 评论:0

无理数的概念是什么?

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式,无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。



扩展资料:

15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。

由无理数引发的数学危机一直延续到19世纪下半叶。1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。


什么是无理数

无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

无理数指的是什么

无理数是指除有理数以外的实数,当中的“理”字来自于拉丁语的rationalis,意思是“理解”,实际是拉丁文对于logos“说明”的翻译,是指无法用两个整数的比来说明一个无理数。

无理数的定义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。

无理数是在实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如π、√2等。

无理数和有理数有哪些区别

1.性质不同

有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

2.范围不同

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。

3.结构不同

有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。


什么叫做无理数?

无理数指的是无限不循环的数字,数字主要分为有理数和无理数。

在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率构成的数字。

无理数经常是用分数来表示。

常见的无理数有非完全平方数的平方根、π和e等。无理数的另一特征是无限的连分数表达式。


无理数的概念是什么

在数学中,无理数是所有不是有理数字的实数,无理数,也称为无限不循环小数,不能写作两整数之比。

无理数的概念

无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

有理数和无理数的区别

(1)性质区别:

有理数是两个整数的比,总能写成整数、有限小数或无限循环小数;无理数不能写成两个整数之比,是无限不循环小数。

(2)结构区别:

有理数是整数和分数的统称;无理数是所有不是有理数的实数。

(3)范围区别:

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行;无理数是指实数范围内不能表示成两个整数之比的数。

无理数集及其他数集的符号

无理数集相当于实数集中有理数集的补集,实数集R,有理数集Q,所以无理数集合符号为CrQ。

所有正整数组成的集合称为正整数集,记作N*,Z+或N+。

所有负整数组成的集合称为负整数集,记作Z-。

全体虚数组成的集合称为虚数集,记作I。

全体实数和虚数组成的复数的集合称为复数集,记作C。


无理数的概念是什么

无理数是指除有理数以外的实数,当中的“理”字来自于拉丁语的rationalis,意思是“理解”,实际是拉丁文对于logos“说明”的翻译,是指无法用两个整数的比来说明一个无理数。

定义:

在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。

无理数是在实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如π、 √2等。

扩展资料
历史:

传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现。他以几何方法证明√2无法用整数及分数表示。而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在。

后来希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。

无理数集:

无理数集是不可数集(因有理数集是可数集而实数集是不可数集)。无理数集是个不完备的拓扑空间,它是与所有正数数列的集拓扑同构的,当中的同构映射是无理数的连分数开展。因而贝尔纲定理可以应用在无数间的拓扑空间上。

什么是无理数举例说明

无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。如圆周率、2的平方根等。

无理数有哪些

常见的无理数有:非完全平方数的平方根、π和e、圆周率等。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

无理数性质

性质1:无理数加(减)无理数既可以是无理数又可以是有理数;

性质2:无理数乘(除)无理数既可以是无理数又可以是有理数;

性质3:无理数加(减)有理数一定是无理数;

性质4:无理数乘(除)一个非0有理数一定是无理数。


本文发布于:2023-02-28 20:30:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167767953384730.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:什么是无理数.doc

本文 PDF 下载地址:什么是无理数.pdf

标签:无理数
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|