二叉树的遍历方法通常有
二叉树的遍历方法通常有:
先根遍历或先序遍历:首先访问根节点,接着遍历左子树,最后遍历右子树。
中根遍历或中序遍历:首先遍历左子树,然后访问根节点,最后遍历右子树。
后根遍历或后序遍历:首先遍历左子树,然后遍历右子树,最后访问根结点。
按层次遍历或宽度优先遍历,从根节点开始访问,从上往下访问每一层节点,在同一层节点中,从左到右访问每一个节点。
二叉树如何遍历
二叉树的遍历,通常用递归的方法来描述。
先根遍历或者先序遍历:首先访问根结点,然后访问左子树,最后访问右子树。
中根便利或者中序遍历:先访问左子树,然后访问根节点,最后访问右子树。
后根遍历或者先后序遍历:首先访问左子树,然后访问根节点,最后访问右子树。
按层次遍历:从最上面一层,也就是根节点所在的一层开始,从上往下从左到右,访问二叉树中的每一个节点。
二叉树的遍历过程是怎样的?
楼主你好,因技术有限,所以在网上找了一些相关的资料,希望可以帮助到你。树是一种简单的非线性结构,所有元素之间具有明显的层次特性。
在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称树的根。每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。树的最大层次称为树的深度。
二*树的特点:(1)非空二*树只有一个根结点;(2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
二*树的基本性质:
(1)在二*树的第k层上,最多有2k-1(k≥1)个结点;
(2)深度为m的二*树最多有2m-1个结点;
(3)度为0的结点(即叶子结点)总是比度为2的结点多一个;
(4)具有n个结点的二*树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分;
(5)具有n个结点的完全二*树的深度为[log2n]+1;
(6)设完全二*树共有n个结点。如果从根结点开始,按层序(每一层从左到右)用自然数1,2,….n给结点进行编号(k=1,2….n),有以下结论:
①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为INT(k/2);
②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(也无右子结点);
③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。
满二*树是指除最后一层外,每一层上的所有结点有两个子结点,则k层上有2k-1个结点深度为m的满二*树有2m-1个结点。
完全二*树是指除最后一层外,每一层上的结点数均达到最大值,在最后一层上只缺少右边的若干结点。
二*树存储结构采用链式存储结构,对于满二*树与完全二*树可以按层序进行顺序存储。
二*树的遍历:
(1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树;
(2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树;
(3)后序遍历(LRD)首先遍历左子树,然后访问遍历右子树,最后访问根结点。
相关请访问 http://jinyichun1566.blog.163.com
二叉树的三种遍历,先,中,后遍历
先序就是先遍历根,再遍历左子树,再遍历右子树。例如上图的先序遍历是:ABCDEFGHK
中序就是先遍历左子树,再遍历根,再右子树。例如上图的中序遍历是:BDCAEHGKF
后序就是先遍历左子树,再右子树,再根。例如上图的后序遍历是:DCBHKGFEA
二叉树的遍历算法
这里有二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法。
1.先序遍历非递归算法
#define
maxsize
100
typedef
struct
{
Bitree
Elem[maxsize];
int
top;
}SqStack;
void
PreOrderUnrec(Bitree
t)
{
SqStack
s;
StackInit(s);
p=t;
while
(p!=null
||
!StackEmpty(s))
{
while
(p!=null)
//遍历左子树
{
visite(p->data);
push(s,p);
p=p->lchild;
}//endwhile
if
(!StackEmpty(s))
//通过下一次循环中的内嵌while实现右子树遍历
{
p=pop(s);
p=p->rchild;
}//endif
}//endwhile
}//PreOrderUnrec
2.中序遍历非递归算法
#define
maxsize
100
typedef
struct
{
Bitree
Elem[maxsize];
int
top;
}SqStack;
void
InOrderUnrec(Bitree
t)
{
SqStack
s;
StackInit(s);
p=t;
while
(p!=null
||
!StackEmpty(s))
{
while
(p!=null)
//遍历左子树
{
push(s,p);
p=p->lchild;
}//endwhile
if
(!StackEmpty(s))
{
p=pop(s);
visite(p->data);
//访问根结点
p=p->rchild;
//通过下一次循环实现右子树遍历
}//endif
}//endwhile
}//InOrderUnrec
3.后序遍历非递归算法
#define
maxsize
100
typedef
enum{L,R}
tagtype;
typedef
struct
{
Bitree
ptr;
tagtype
tag;
}stacknode;
typedef
struct
{
stacknode
Elem[maxsize];
int
top;
}SqStack;
void
PostOrderUnrec(Bitree
t)
{
SqStack
s;
stacknode
x;
StackInit(s);
p=t;
do
{
while
(p!=null)
//遍历左子树
{
x.ptr
=
p;
x.tag
=
L;
//标记为左子树
push(s,x);
p=p->lchild;
}
while
(!StackEmpty(s)
&&
s.Elem[s.top].tag==R)
{
x
=
pop(s);
p
=
x.ptr;
visite(p->data);
//tag为R,表示右子树访问完毕,故访问根结点
}
if
(!StackEmpty(s))
{
s.Elem[s.top].tag
=R;
//遍历右子树
p=s.Elem[s.top].ptr->rchild;
}
}while
(!StackEmpty(s));
}//PostOrderUnrec
什么是二叉树数的遍历
二叉树遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。
遍历方案
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:访问结点本身(N),遍历该结点的左子树(L),遍历该结点的右子树(R)。
以上三种操作有六种执行次序:NLR、LNR、LRN、NRL、RNL、RLN。
注意:前三种次序与后三种次序对称
遍历命名
根据访问结点操作发生位置命名:
①NLR:前序遍历(PreorderTraversal亦称(先序遍历))
——访问根结点的操作发生在遍历其左右子树之前。
②LNR:中序遍历(InorderTraversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
③LRN:后序遍历(PostorderTraversal)——访问根结点的操作发生在遍历其左右子树之后。注意:由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
遍历算法
1.先(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴ 访问根结点;
⑵ 遍历左子树;
⑶ 遍历右子树。
2.中(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵访问根结点;
⑶遍历右子树。
3.后(根)序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵遍历右子树;
⑶访问根结点。