矩阵行列式怎么算?
一个n×n的方阵A的行列式记为det(A)或者|A|,一个2×2矩阵的行列式可表示如下:
把一个n阶行列式中的元素aij所在的第i行和第j列划去后,留下来的n-1阶行列式叫做元素aij的余子式,记作Mij。记Aij=(-1)i+jMij,叫做元素aij的代数余子式。例如:
一个n×n矩阵的行列式等于其任意行(或列)的元素与对应的代数余子式乘积之和,即:
扩展资料:
一、定理1:
设A为一n×n三角形矩阵。则A的行列式等于A的对角元素的乘积。
根据定理1,只需证明结论对下三角形矩阵成立。利用余子式展开和对n的归纳法,容易证明这个结论。
二、定理2:
令A为n×n矩阵。
1、若A有一行或一列包含的元素全为零,则det(A)=0。
2、若A有两行或两列相等,则det(A)=0。
这些结论容易利用余子式展开加以证明。
矩阵与行列式的区别
区别:
1、矩阵是一个数表;行列式是一个n阶的方阵。
2、矩阵不能从整体上被看成一个数;行列式最终可以算出来变成一个数。
3、矩阵的行数和列数可以不同;行列式行数和列数必须相同。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
扩展资料:
行列式性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
参考资料:
百度百科-矩阵
百度百科-行列式
矩阵的行列式怎么算
利用行列式的性质,
1.行列式的某一行(列)元素,加上另一行(列)的元素的k倍,行列式的值不变。
于是可以第一行加上第二行的1倍。
2.方阵有两行成比例,则行列式为0。
第一行和最后一行是相等的(成比例,1:1),所以行列式的值为0。
矩阵的行列式是如何定义的?
负单位矩阵的行列式值1。
矩阵行列式是指矩阵的全部元素构成的行列式,设A=(aij)是数域P上的一个n阶矩阵,则所有A=(aij)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kn|A|,|A*|=|A|n-1,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A-1|=|A|-1。
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
矩阵的行列式怎么求
对于数值型行列式来说,我们先看低阶行列式的计算,对于二阶或者三阶行列式其是有自己的计算公式的,我们可以直接计算。三阶以上的行列式,一般可以运用行列式按行或者按列展开定理展开为低阶行列式再进行计算,对于较复杂的三阶行列式也可以考虑先进行展开。
在运用展开定理时,一般需要先利用行列式的性质将行列式化为某行或者某列只有一个非零元的形式,再进行展开。特殊低阶行列式可以直接利用行列式的性质进行求解。
对于高阶行列式的计算,我们的基本思路有两个:一是利用行列式的性质进行三角化,也就是将行列式化为上三角或者下三角行列式来计算;二是运用按行或者按列直接展开,其中运用展开定理的行列式一般要求有某行或者某列仅有一个或者两个非零元,如果展开之后仍然没有降低计算难度,则可以观察是否能得到递推公式,再进行计算。
什么是矩阵,什么是行列式
本文发布于:2023-02-28 20:28:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167767704287010.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:矩阵行列式(矩阵行列式等于0意味着什么).doc
本文 PDF 下载地址:矩阵行列式(矩阵行列式等于0意味着什么).pdf
留言与评论(共有 0 条评论) |