mysql分页(mysql分页的几种方式)

更新时间:2023-03-01 21:22:14 阅读: 评论:0

mysql 分表分页查询解决思路

当业务上按照月份分表,但是前端h5需要分页展示,小伙伴们不知有没有遇到这个这个需求最后怎么完成的。

我这里想了一个解决思路,可能还不完善,希望能抛转引玉。

1、入参pageNo 为页号码,如果为1那么就是第一页。pageSize 可以是入参也可定死,这里定死10条。Limit 是数据偏移标记,根据入参pageNo 计算出来的,Limit=(pageNo-1)*pageSize。假设A表有41条数据符合,B表有51条数据符合,如下图。

有几种种情况   1.如果limit<A表41条 那么需要从A表中取数据,(1)如果Limit+pageSize<Count直接获取数据即可(2)如果Limit+pageSize>Count,那么需要从A 表取部分数据从B表取一部分数据。

1.如果limit>A表41条  那么需要从B表取数据,如果B数据依然不足,那么重复以上的步骤。如下图

mysql数据库分页

很多应用往往只展示最新或最热门的几条记录,但为了旧记录仍然可访问,所以就需要个分页的导航栏。然而,如何通过MySQL更好的实现分页,始终是比较令人头疼的问题。虽然没有拿来就能用的解决办法,但了解数据库的底层或多或少有助于优化分页查询。

我们先从一个常用但性能很差的查询来看一看。

SELECT *
FROM city
ORDER BY id DESC
LIMIT 0, 15

这个查询耗时0.00c。So,这个查询有什么问题呢?实际上,这个查询语句和参数都没有问题,因为它用到了下面表的主键,而且只读取15条记录。

CREATE TABLE city (
id int(10) unsigned NOT NULL AUTO_INCREMENT,
city varchar(128) NOT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB;

真正的问题在于offt(分页偏移量)很大的时候,像下面这样:

SELECT *
FROM city
ORDER BY id DESC
LIMIT 100000, 15;

上面的查询在有2M行记录时需要0.22c,通过EXPLAIN查看SQL的执行计划可以发现该SQL检索了100015行,但最后只需要15行。大的分页偏移量会增加使用的数据,MySQL会将大量最终不会使用的数据加载到内存中。就算我们假设大部分网站的用户只访问前几页数据,但少量的大的分页偏移量的请求也会对整个系统造成危害。Facebook意识到了这一点,但Facebook并没有为了每秒可以处理更多的请求而去优化数据库,而是将重心放在将请求响应时间的方差变小。

对于分页请求,还有一个信息也很重要,就是总共的记录数。我们可以通过下面的查询很容易的获取总的记录数。

SELECT COUNT(*)
FROM city;

然而,上面的SQL在采用InnoDB为存储引擎时需要耗费9.28c。一个不正确的优化是采用 SQL_CALC_FOUND_ROWS,SQL_CALC_FOUND_ROWS 可以在能够在分页查询时事先准备好符合条件的记录数,随后只要执行一句 lect FOUND_ROWS(); 就能获得总记录数。但是在大多数情况下,查询语句简短并不意味着性能的提高。不幸的是,这种分页查询方式在许多主流框架中都有用到,下面看看这个语句的查询性能。

SELECT SQL_CALC_FOUND_ROWS *
FROM city
ORDER BY id DESC
LIMIT 100000, 15;

这个语句耗时20.02c,是上一个的两倍。事实证明使用 SQL_CALC_FOUND_ROWS 做分页是很糟糕的想法。
下面来看看到底如何优化。文章分为两部分,第一部分是如何获取记录的总数目,第二部分是获取真正的记录。

高效的计算行数

如果采用的引擎是MyISAM,可以直接执行COUNT(*)去获取行数即可。相似的,在堆表中也会将行数存储到表的元信息中。但如果引擎是InnoDB情况就会复杂一些,因为InnoDB不保存表的具体行数。

我们可以将行数缓存起来,然后可以通过一个守护进程定期更新或者用户的某些操作导致缓存失效时,执行下面的语句:

SELECT COUNT(*)
FROM city
USE INDEX(PRIMARY);

获取记录

下面进入这篇文章最重要的部分,获取分页要展示的记录。上面已经说过了,大的偏移量会影响性能,所以我们要重写查询语句。为了演示,我们创建一个新的表“news”,按照时事性排序(最新发布的在最前面),实现一个高性能的分页。为了简单,我们就假设最新发布的新闻的Id也是最大的。

CREATE TABLE news(
id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
title VARCHAR(128) NOT NULL
) ENGINE=InnoDB;

一个比较高效的方式是基于用户展示的最后一个新闻Id。查询下一页的语句如下,需要传入当前页面展示的最后一个Id。

SELECT *
FROM news WHERE id < $last_id
ORDER BY id DESC
LIMIT $perpage

查询上一页的语句类似,只不过需要传入当前页的第一个Id,并且要逆序。

SELECT *
FROM news WHERE id > $last_id
ORDER BY id ASC
LIMIT $perpage

上面的查询方式适合实现简易的分页,即不显示具体的页数导航,只显示“上一页”和“下一页”,例如博客中页脚显示“上一页”,“下一页”的按钮。但如果要实现真正的页面导航还是很难的,下面看看另一种方式。

SELECT id
FROM (
SELECT id, ((@cnt:= @cnt + 1) + $perpage - 1) % $perpage cnt
FROM news
JOIN (SELECT @cnt:= 0)T
WHERE id < $last_id
ORDER BY id DESC
LIMIT $perpage * $buttons
)C
WHERE cnt = 0;

通过上面的语句可以为每一个分页的按钮计算出一个offt对应的id。这种方法还有一个好处。假设,网站上正在发布一片新的文章,那么所有文章的位置都会往后移一位,所以如果用户在发布文章时换页,那么他会看见一篇文章两次。如果固定了每个按钮的offt Id,这个问题就迎刃而解了。Mark Callaghan发表过一篇类似的博客,利用了组合索引和两个位置变量,但是基本思想是一致的。

如果表中的记录很少被删除、修改,还可以将记录对应的页码存储到表中,并在该列上创建合适的索引。采用这种方式,当新增一个记录的时候,需要执行下面的查询重新生成对应的页号。

SET p:= 0;
UPDATE news SET page=CEIL((p:= p + 1) / $perpage) ORDER BY id DESC;

当然,也可以新增一个专用于分页的表,可以用个后台程序来维护。

UPDATE pagination T
JOIN (
SELECT id, CEIL((p:= p + 1) / $perpage) page
FROM news
ORDER BY id
)C
ON C.id = T.id
SET T.page = C.page;

现在想获取任意一页的元素就很简单了:

SELECT *
FROM news A
JOIN pagination B ON A.id=B.ID
WHERE page=$offt;

还有另外一种与上种方法比较相似的方法来做分页,这种方式比较试用于数据集相对小,并且没有可用的索引的情况下—比如处理搜索结果时。在一个普通的服务器上执行下面的查询,当有2M条记录时,要耗费2c左右。这种方式比较简单,创建一个用来存储所有Id的临时表即可(这也是最耗费性能的地方)。

CREATE TEMPORARY TABLE _tmp (KEY SORT(random))
SELECT id, FLOOR(RAND() * 0x8000000) random
FROM city;

ALTER TABLE _tmp ADD OFFSET INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, DROP INDEX SORT,ORDER BY random;

接下来就可以向下面一样执行分页查询了。

SELECT *
FROM _tmp
WHERE OFFSET >= $offt
ORDER BY OFFSET
LIMIT $perpage;

简单来说,对于分页的优化就是。。。避免数据量大时扫描过多的记录。

mysql 数据量大的表如何做分页查询

直接用limit start, count分页语句, 也是我程序中用的方法:
lect * from product limit start, count
当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:
lect * from product limit 10, 20 0.016秒
lect * from product limit 100, 20 0.016秒
lect * from product limit 1000, 20 0.047秒
lect * from product limit 10000, 20 0.094秒
我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右) lect * from product limit 400000, 20 3.229秒
再看我们取最后一页记录的时间
lect * from product limit 866613, 20 37.44秒
难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时
间是无法忍受的。
从中我们也能总结出两件事情:
1)limit语句的查询时间与起始记录的位置成正比
2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

MySQL百万级数据量分页查询方法及其优化建议

offt+limit方式的分页查询,当数据表超过100w条记录,性能会很差。
主要原因是offt limit的分页方式是从头开始查询,然后舍弃前offt个记录,所以offt偏移量越大,查询速度越慢。

比如: 读第10000到10019行元素(pk是主键/唯一键).

使用order by id可以在查询时使用主键索引。
但是这种方式在id为uuid的时候就会出现问题。可以使用where in的方式解决:

带条件的查询:
如果在分页查询中添加了where条件例如 type = 'a’这样的条件,sql变成 :

这种情况因为type没有使用索引也会导致查询速度变慢。但是只添加type为索引查询速度还是很慢,是因为查询的数据量太多了。这个时候考虑添加组合索引,组合索引的顺序要where条件字段在前,id在后,如 (type,id),因为组合索引查询时用到了type索引,而type跟id是组合索引的关系,如果只lect id ,那么直接就可以按组合索引返回id,而不需要再进行一次查询去返回id

使用uuid作为主键不仅会带来性能上的问题,在查询时也会遇到问题。

因为在使用lect id from table limit 10000,10 查询id数据时,默认是对id进行排序,返回的是排序后的id结果,如果我们想按插入顺序查询结果,这样查询出来的结果就与我们的需求不相符。

聚集索引跟非聚集索引:聚集索引类似与新华字典的拼音,根据拼音搜索到的信息都是连续的,可以很快获取到它前后的信息。非聚集索引类似于部首查询,信息存放的位置可能不在一个区域。对经常使用范围查询的字段考虑使用聚集索引。

InnoDB中索引分为聚簇索引(主键索引)和非聚簇索引(非主键索引),聚簇索引的叶子节点中保存的是整行记录,而非聚簇索引的叶子节点中保存的是该行记录的主键的值。

如果您的表上定义有主键,该主键索引是聚集索引。
如果你不定义为您的表的主键时,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚集索引。
如果没有这样的列,InnoDB就自己产生一个这样的ID值,
优先选index key_len小的索引进行count(*),尽量不使用聚簇索引

在没有where条件的情况下,count(*)和count(常量),如果有非聚簇索引,mysql会自动选择非聚簇索引,因为非聚簇索引所占的空间小,如果没有非聚簇索引会使用聚集索引。count(primary key)主键id为聚集索引,使用聚集索引。有where条件的情况下,是否使用索引会根据where条件判断。

MySQL分页的sql语言怎么写?

1、首先我们建立一个表表的数据,这个表里有25条数据,id从1到25。(下图是部分截图)

2、要分页数据,首先我们假设一页有10条数据,我们可以用mysql的 limit关键字来限定返回多少条数据。并且用order by来排序数据,这里用 id来排序。所以第一页的sql可以如图这样写。

3、执行后得到的数据如图,就是 id从1到10的前10条数据,因为我们是按id升序来排序的。

4、上面第一页的sql是简化的写法,完整的写法如图,得到的结果和上图的一模一样。代码里 limit 0, 10 的意思是从第一条数据开始,取10条数据。(注意的是第一条数据是从0开始的)

5、那么第二页的数据,关键是要知道是从哪一条数据开始,可以用这个公式得到: (页码-1) * 每页显示多少条,即 (2-1) * 10 = 10, 所以sql语句如图, limit 10, 10。

6、执行后,结果正确,得到id从11到20的10条数据。

7、同理第三页数据的sql如图,<br/>就是 limit 20, 10。

8、查询的结果如图,因为这页只剩下5条数据了,所以只显示5条数据。如果你有更多页的数据,后面的数据只需要按上面的公式,得到从哪行开始,就可以写对应的sql语句了。


使用MySQL的递延Join连接实现高效分页 - Aaron

在 Web 应用程序中跨大型数据集分页记录似乎是一个简单的问题,但实际上很难扩展。两种主要的分页策略是偏移/限制和游标。

我们将首先看一下这两种方法,然后稍作修改,可以使偏移/限制非常高效。

偏移/限制分页

偏移/限制方法是迄今为止最常见的方法,它通过跳过一定数量的记录(页)并将结果限制为一页来工作。

例如,假设您的应用程序配置为每页显示 15 条记录。您的 SQL 将如下所示:

这是最常见的,因为它非常简单,易于推理,并且几乎每个框架都支持它。

除了易于实现之外,它还具有页面可直接寻址的优点。例如,如果您想直接导航到第 20 页,您可以这样做,因为该偏移量很容易计算。

但是有一个主要的缺点,它潜伏在数据库处理偏移量的方式中。偏移量告诉数据库放弃从查询中返回的前N个结果。不过数据库仍然要从磁盘上获取这些行。

如果你丢弃的是100条记录,这并不重要,但如果你丢弃的是100,000条记录,数据库就会为了丢弃这些结果而做大量的工作。

在实践中,这意味着第一个页面会快速加载,之后的每一个页面都会变得越来越慢,直到你达到一个点,网络请求可能会直接超时。

基于游标的分页

基于游标的分页弥补了偏移/限制的一些不足,同时引入了一些自己的不足。

基于游标的分页是通过存储一些关于最后呈现给用户的记录的状态,然后根据这个状态来进行下一次查询。

因此,它不是按顺序获取所有的记录并丢弃前N条,而是只获取最后一个位置N之后的记录。

如果按ID排序,SQL可能看起来像这样。

你可能已经看到了其中的好处。因为我们知道上次向用户展示的ID,我们知道下一个页面将以一个更高的ID开始。我们甚至不需要检查ID较低的行,因为我们百分之百肯定地知道那些行不需要被显示。

在上面的例子中,我特别说明了ID可能不是连续的,也就是说,可能有缺失的记录。这使得我们无法计算出哪些记录会出现在某一页面上,你必须跟踪之前那一页面上的最后一条记录是什么。

与偏移/限制分页不同,使用游标分页时,页面不能直接寻址,你只能导航到 "下一页 "或 "上一页"。

不过光标分页的好处是在任何数量的页面上都很迅速。它也很适合无限滚动,在这种情况下,页面首先不需要可以直接寻址。

Laravel文档中有一些关于偏移量和游标之间的权衡的好的背景。

https://laravel.com/docs/pagination cursor -vs-offt-pagination

考虑到所有这些,让我们来看看一个偏移/限制优化,可以使它的性能足以在成千上万的页面上使用。

使用递延join的Offt/Limit

递延连接(deferred join )是一种技术,它将对要求的列的访问推迟到应用了偏移量和限制之后。

使用这种技术,我们创建一个内部查询,可以用特定的索引进行优化,以获得最大的速度,然后将结果连接到同一个表,以获取完整的行。

它看起来像这样:

这种方法的好处可以根据你的数据集有很大的不同,但是这种方法允许数据库尽可能少地检查数据,以满足用户的意图。

查询中 "昂贵的 "lect *部分只在与内部查询相匹配的15条记录上运行。所有数据的Select都被推迟了,因此被称为推迟join。

这种方法不太可能比传统的偏移/限制性能差,尽管它是可能的,所以一定要在你的数据上进行测试!

Laravel实现

我们如何把这一点带到我们最喜欢的网络框架,如Laravel和Rails?

让我们具体看看Laravel,因为我不知道Rails。

感谢Laravel的macroable特性,我们可以扩展Eloquent Query Builder来添加一个新的方法,叫做deferredPaginate。为了保持一致性,我们将模仿常规分页的签名。

我们将尝试做尽可能少的自定义工作,并将大部分工作留给 Laravel。

这是我们要做的:

这应该为我们提供 LaravelLengthAwarePaginator 和延迟连接的所有好处!

一个Github仓库

递延Join和覆盖索引

还没有完成...

使用递延Join的主要好处是减少了数据库必须检索然后丢弃的数据量。我们可以通过帮助数据库获得它需要的数据而更进一步,而无需获取底层行。

这样做的方法称为“覆盖索引covering index”,它是确保快速偏移/限制分页的最终解决方案。

覆盖索引是一个索引,在这个索引中,查询的所有需要的字段都包含在索引本身中。当一个查询的所有部分都能被一个索引 "覆盖 "时,数据库根本不需要读取该行,它可以从索引中获得它需要的一切。

请注意,覆盖索引并不是以任何特殊方式创建的。它只是指一个索引满足了一个查询所需要的一切的情况。一个查询上的覆盖索引很可能不是另一个查询上的覆盖索引。

在接下来的几个例子中,我们将使用这个基本的表,我把它填满了~1000万条记录。

让我们看一个仅lect索引列的简单查询。在这种情况下,我们将从email表中进行lect contacts。

在这种情况下,数据库根本不需要读取基础行。在MySQL中,我们可以通过运行一个解释并查看额外的列来验证这一点:

extra: using index告诉我们,MySQL能够只使用索引来满足整个查询,而不看基础行。

如果尝试lect name from contacts limit 10, 我们将期望MySQL必须到该行去获取数据,因为名字name没有被索引。这正是发生的情况,由下面的解释显示。

extra不再显示 using index,所以我们没有使用覆盖索引。

假设你每页有15条记录,你的用户想查看第1001页,你的内部查询最终会是这样的。

lect id from contacts order by id limit 15 OFFSET 150000

explain结果显示:

MySQL能够单看索引来执行这个查询。它不会简单地跳过前15万行,在使用offt是没有办法的,但它不需要读取15万行。(只有游标分页可以让你跳过所有的行)。

即使使用覆盖索引和延迟连接,当你到达后面的页面时,结果也会变慢,尽管与传统的偏移/限制相比,它应该是最小的。使用这些方法,你可以轻易地深入到数千页。

更好的覆盖索引

这里的很多好处取决于拥有良好的覆盖索引,所以让我们稍微讨论一下。一切都取决于您的数据和用户的使用模式,但是您可以采取一些措施来确保查询的最高命中率。

这将主要与 MySQL 对话,因为那是我有经验的地方。其他数据库中的情况可能会有所不同。

大多数开发人员习惯于为单列添加索引,但没有什么能阻止您向多列添加索引。事实上,如果您的目标是为昂贵的分页查询创建覆盖索引,您几乎肯定需要一个多列索引。

当你试图为分页优化一个索引时,一定要把按列排序放在最后。如果你的用户要按update_at排序,这应该是你复合索引中的最后一列。

看看下面这个包括三列的索引。

在MySQL中,复合索引是从左到右访问的,如果一个列缺失,或者在第一个范围条件之后,MySQL会停止使用一个索引。

MySQL 将能够在以下场景中使用该索引:

如果你跳过is_archived,MySQL将无法访问update_at,将不得不诉诸于没有该索引的排序,或者根本不使用该索引,所以要确保你有相应的计划。

主键始终存在

在MySQL的InnoDB中,所有的索引都附加了主键。这意味着(email)的索引实际上是(email,id)的索引,当涉及到覆盖索引和延迟连接时,这是相当重要的。

查询lect email from contacts order by id完全被email上的一个索引所覆盖,因为InnoDB将id附加到了该索引上。

使用我们上面的综合例子,你可以看到这有什么好处。

因为复合索引涵盖了is_deleted, is_archived, updated_at, 和(通过InnoDB的功能)id,整个查询可以仅由索引来满足。

降序索引

大多数时候,用户都在寻找 "最新的 "项目,即最近更新或创建的项目,这可以通过按update_at DESC排序来满足。

如果你知道你的用户主要是以降序的方式对他们的结果进行排序,那么特别将你的索引设为降序索引可能是有意义的。

MySQL 8是第一个支持降序索引的MySQL版本。

如果你在explain的Extra部分看到向后索引扫描,你也许可以配置一个更好的索引。

前向索引扫描比后向扫描快~15%,所以你要按照你认为你的用户最常使用的顺序添加索引,并为少数使用情况承担惩罚。

太阳底下无新事

这种使用偏移/限制分页与延迟连接和覆盖索引的方法并不是银弹。

仅仅是递迟连接就可以让你的速度得到很好的提升,但是需要花一些额外的心思来设计正确的索引以获得最大的好处。

有一种观点认为,递延连接应该是框架中默认的偏移offt/限制limit方法,而任何时候覆盖索引的出现都只是一种奖励。我还没有在足够多的生产环境中测试过,所以还没有强烈主张这样做。

使用MySQL的递延Join连接实现高效分页 - Aaron


本文发布于:2023-02-28 20:27:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167767693483833.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:mysql分页(mysql分页的几种方式).doc

本文 PDF 下载地址:mysql分页(mysql分页的几种方式).pdf

下一篇:返回列表
标签:分页   几种   方式   mysql
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|