三棱锥体积公式(三棱锥体积公式推导)

更新时间:2023-03-01 21:19:16 阅读: 评论:0

三棱锥体积公式是什么?

三棱锥的体积公式:V=(1/3)*S*H。(V:表示三棱锥的体积,S:表示的是三棱锥的底面积,H:表示三棱锥的高)。

三棱锥锥体的一种几何体,由四个三角形组成。固定底面时有一个顶点,不固定底面时有四个顶点。(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)。

一般的三棱锥内切球心在四个面上的射影与四个面的重心重合,据此可确定球心位置。

扩展资料:

三棱锥的重要计算公式:

h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长有:

三棱锥棱锥的侧面展开图是由4个三角形组成的,展开图的面积,就是棱锥的侧面积,则 :(其中Si,i= 1,2为第i个侧面的面积)。

1、S全=S棱锥侧+S底。

2、S正三棱锥=1/2C*L+S底。

三棱锥的性质:

1、四面体的每一条棱与其对棱的中点确定一个平面,这样的六个平面共点。

2、四面体外接平行六面体的各棱分别平行且等于四面体中联结各对棱中点的线段。

3、四面体的六条棱的六个中垂面共点,这点是四面体外接球的中心。每个四面体有唯一的外接球。

参考资料来源:百度百科-三棱锥


三棱锥的体积公式是什么?

三棱锥的体积公式:V=(1/3)*S*H。(V:表示三棱锥的体积,S:表示的是三棱锥的底面积,H:表示三棱锥的高)。

三棱锥锥体的一种几何体,由四个三角形组成。固定底面时有一个顶点,不固定底面时有四个顶点。(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)。

正三棱锥的性质:

1、底面是等边三角形。

2、侧面是三个全等的等腰三角形。

3、顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。

正四面体的性质:

1、正四面体的每一个面是正三角形,反之亦然。

2、正四面体是三组对棱都垂直的等面四面体。

3、正四面体是两组对棱垂直的等面四面体。


三棱锥体积是什么呢?

三棱锥的体积公式:V=(1/3)*S*H。(V:表示三棱锥的体积,S:表示的是三棱锥的底面积,H:表示三棱锥的高)。

三棱锥锥体的一种几何体,由四个三角形组成。固定底面时有一个顶点,不固定底面时有四个顶点。(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)。

一般的三棱锥内切球心在四个面上的射影与四个面的重心重合,据此可确定球心位置。

三棱锥的来历:

在公元前1650年左右的莱因德数学纸草书中,棱锥已经作为数学对象被几何学家研究。纸草书的56至59题是有关正方锥的底边、高以及底面和侧面形成的二面角之间关系的计算,如已知高和底边长度,求二面角等。

传说由欧几里德在公元前三世纪写成的《几何原本》中,第十二章第七个命题证明了:三角柱的体积等于同底同高的三角锥的三倍,但《几何原本》中没有给出直接的棱锥体积公式。


三棱锥体积公式

三棱锥体积公式为V=(1/3)S×H,V表示体积,S表示底面积,H表示法线高度。

三棱锥是几何图形中最为常见的几何体,它是由四个面构成,这四个面都是由三角形组成。三棱锥面体积的计算公式的应用,主要是为后面复杂的综合体的立体几何做铺垫,综合体的立体几何存在切分、运用辅助线等情况,通常会出现分割成三棱锥、长方体等立体几何的情况,利用分割出来的几何体形进行整体计算,牢记三棱锥的一个理论基础才能更好的提升计算能力。


三棱锥的体积是什么?

三棱锥的体积公式是:v=1/3sh,即三分之一乘以底面积再乘以高。<br>三棱锥是一种简单多面体。它有四个面、四个顶点、六条棱、四个三面角、六个二面角与十二个面角。

若四个顶点为A,B,C,D.则可记为四面体ABCD,当看做以A为顶点的三棱锥时,也可记为三棱锥A-BCD。<br>四面体的每个顶点都有惟一的不通过它的面,称为该顶点的对面,原顶点称这个面的对顶点。在四面体的六条棱中,没有公共端点的两条称为对棱。四面体有三双对棱,且对棱的中点连结的线段(三条)彼此平分于同一点即四面体的重心,亦称四面体的形心。

例题

这是一个一般的三棱柱ABC-A'B'C',它的体积可以分为三个等体积的三棱锥,即三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'。

因为三棱柱的侧面A'ABB'是平行四边形,所以△A'AB的面积=△A'BB'的面积,即其中三棱锥C-A'AB与三棱锥C-A'B'B的底面积相等,它们两个的顶点都是C,即C到它们底面的距离都相等,所以三棱锥C-A'AB与三棱锥C-A'B'B的体积相等。而三棱锥C-A'B'B也可以看作是三棱锥A'-BCB',且三棱等),且它们两个的顶点都是A',即A'到它们底面的距离都相等,所以三棱锥A'-CB'C'与三棱锥A'-BCB'的体积也相等,故三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'的体积都相等。


本文发布于:2023-02-28 20:27:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167767675686924.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:三棱锥体积公式(三棱锥体积公式推导).doc

本文 PDF 下载地址:三棱锥体积公式(三棱锥体积公式推导).pdf

上一篇:毕业致谢
下一篇:返回列表
标签:棱锥   公式   体积
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|