曲率是什么意思?
曲率意思是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。
曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。
意义
曲率是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意义。
本文考虑基本的情况,欧几里得空间中的曲线和曲面的曲率。一般意义下的曲率,请参照曲率张量。
在动力学中,一般的,一个物体相对于另一个物体做变速运动时也会产生曲率。这是关于时空扭曲造成的。结合广义相对论的等效原理,变速运动的物体可以看成处于引力场当中,因而产生曲率。
以上内容参考:百度百科-曲率
曲率是什么意思
曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。
拓展资料:
曲率的分类:
平均曲率、主曲率和高斯曲率是曲率的三个基本要素。
平均曲率(mean curvature) 是微分几何中一个“外在的”弯曲测量标准,局部地描述了一个曲面嵌入周围空间(比如二维曲面嵌入三维欧几里得空间)的曲率。
主曲率:过曲面上某个点上具有无穷个正交曲率,其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值Kmax ,垂直于极大曲率面的曲率为极小值Kmin。这两个曲率属性为主曲率。他们代表着法曲率的极值
高斯曲率:微分几何中,曲面上一点的高斯曲率是该点主曲率κ1和κ2的乘积。它是曲率的内在度量,也即,它的值只依赖于曲面上的距离如何测量,而不是曲面如何嵌入到空间。这个结果是高斯绝妙定理的主要内容。
参考资料:百度百科-曲率
曲率的定义
曲率是什么
曲率是什么,数字越大越弯吗
就是针对曲线上某个点的切线方向角对弧长的转动率。简单理解就是,曲线上某点做切线,曲线偏离切线的程度越大,弯曲程度就越大,即曲率越大。
数字越大越弯。
曲线上点M处的曲率的倒数,称作曲线在这点处的曲率半径,
曲率圆具有以下性质:
(1)曲率圆与曲线在点M处有共同的切线和曲率;
(2)在点M邻近与曲线有相同的凹向;
因此,在实际工程设计问题中,常用曲率圆在点M邻近的一段圆弧来近似代替曲线弧,以使问题简化。
扩展资料:
曲率是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意义。
在动力学中,一般的,一个物体相对于另一个物体做变速运动时也会产生曲率。这是关于时空扭曲造成的。结合广义相对论的等效原理,变速运动的物体可以看成处于引力场当中,因而产生曲率。
按照广义相对论的解释,在引力场中,时空的性质是由物体的“质量”分布决定的,物体“质量”的分布状况使时空性质变得不均匀,引起了时空的弯曲。因为一个物体有质量就会对时空造成弯曲,而你可以认为有了速度,有质量的物体变得更重了,时空弯曲的曲率就更大了。
参考资料来源:百度百科——曲率
曲率的公式是什么?
极坐标中,曲率的公式为:K=|ρ^2+2ρ'^2-ρρ''|/(ρ^2+ρ'^2)^(3/2)。
(1)对于差分几何上的应用,请参阅Cesàro方程;
(2)对于地球的曲率半径(由椭圆椭圆近似),请参见地球的曲率半径;
(3)曲率半径也用于梁的弯曲三部分方程中;
(4)曲率半径(光学)。
(5)半导体结构中的应力:
扩展资料:
曲率是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意义。
本文考虑基本的情况,欧几里得空间中的曲线和曲面的曲率。一般意义下的曲率,请参照曲率张量。
在动力学中,一般的,一个物体相对于另一个物体做变速运动时也会产生曲率。这是关于时空扭曲造成的。结合广义相对论的等效原理,变速运动的物体可以看成处于引力场当中,因而产生曲率。
按照广义相对论的解释,在引力场中,时空的性质是由物体的“质量”分布决定的,物体“质量”的分布状况使时空性质变得不均匀,引起了时空的弯曲。因为一个物体有质量就会对时空造成弯曲,而你可以认为有了速度,有质量的物体变得更重了,时空弯曲的曲率就更大了。
在物理中,曲率通常通过法向加速度(向心加速度)来求,具体请参见法向加速度。
曲线上点M处的曲率的倒数,称作曲线在这点处的曲率半径,记作p,则:
在点M处曲线的法线的某一侧上取一点D,使dm=p,并以D为圆心,以p为半径作圆。把这个圆称作曲线在点M处的曲率圆,把圆心D称做曲线在M处的曲率中心。
曲率圆具有以下性质:
(1)曲率圆与曲线在点M处有共同的切线和曲率;
(2)在点M邻近与曲线有相同的凹向;
因此,在实际工程设计问题中,常用曲率圆在点M邻近的一段圆弧来近似代替曲线弧,以使问题简化。
参考资料来源:百度百科-曲率
本文发布于:2023-02-28 20:27:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167767612483532.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:曲率(曲率半径).doc
本文 PDF 下载地址:曲率(曲率半径).pdf
留言与评论(共有 0 条评论) |