什么是共轭复数
“共轭复数”的基本概念和运算方法是什么?
共轭复数是什么?
具体如图:
根据一元二次方程求根公式韦达定理:
,当时,方程无实根,但在复数范围内有2个复根。复根的求法为(其中是复数,)。
由于共轭复数的定义是形如的形式,称与为共轭复数。
另一种表达方法可用向量法表达:,。其中,tanΩ=b/a。
由于一元二次方程的两根满足上述形式,故一元二次方程在时的两根为共轭复根。
根与系数关系:,。
扩展资料:
共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.
参考资料来源:百度百科——共轭复根
什么是共轭复数?
非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。
共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。
共轭复根求解公式:
通常出现在一元二次方程中。若根的判别式△=b2-4ac<0, ,方程有一对共轭复根。
根据一元二次方程求根公式韦达定理:x1,2=-b±√b2-4ac/2a,当b2-4ac<0时, 方程无实根,但在复数范围内有2个复根。复根的求法为x1,2=-b±i√4ac-b2/2a(其中i是虚数,i2=-1)。
由于共轭复数的定义是形如a±bi(b≠0)的形式,称a+bi与a-bi(b≠0)为共轭复数。
另一种表达方法可用向量法表达:x1=pejΩ,x2=pe-jΩ其中p=√a2+b2,tanΩ=b/a。
由于一元二次方程的两根满足上述形式,故一元二次方程在b2-4ac<0时的两根为共轭复根。
根与系数关系:x1+x2=-b/a,x1+x2=c/a。
本文发布于:2023-02-28 20:24:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167767353785791.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:共轭复数(共轭复数什么意思).doc
本文 PDF 下载地址:共轭复数(共轭复数什么意思).pdf
留言与评论(共有 0 条评论) |