辅助角公式是什么?
辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知,如图:
提出者:
李善兰,原名李心兰,字竟芳,号秋纫,别号壬叔。出生于1811年 1月22日,逝世于1882年12月9日,浙江海宁人,是中国近代著名的数学、天文学、力学和植物学家,创立了二次平方根的幂级数展开式,研究各种三角函数,反三角函数和对数函数的幂级数展开式(现称“自然数幂求和公式”),这是李善兰也是19世纪中国数学界最重大的成就。
辅助角公式
辅助角公式是公式可把含sinx,cosx的一次式的三角函数式化为Asin(x+φ)的形式,从而便于进一步探索三角函数的性质,由于该公式含有辅助角φ,故我们称之为辅助角公式。辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin(a>0)。
辅助角公式
辅助角公式的主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。辅助角公式的内容是asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。
其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,分母的位置永远是你用来表示函数名称的系数。
辅助角公式是什么
辅助角公式:使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。
虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。辅助角公式是李善兰先生提出的一种高等三角函数公式,是数学上的专业术语,隶属于高等数学知识。
相关如下
辅助角公式推理过程:
asinx+bcosx
=√(a^2+b^2){sinx*(a/√(a^2+b^2)+cosx*(b/√(a^2+b^2)}
=√(a^2+b^2)sin(x+φ)
所以:cosφ=a/√(a^2+b^2) 或者 sinφ=b/√(a^2+b^2) 或者 tanφ=b/a(φ=arctanb/a )
其实就是运用了sin的二倍角公式(逆过程,即倒推),要验证一下的话,就用sin^2+cos^2=1。
数学的辅助角公式?
辅助角公式通常用于化三角函数为正弦型函数。
注意φ的获取
由(a,b)确定φ所在象限的列举:
供参考,请笑纳。
辅助角公式是什么
辅助角公式
本文发布于:2023-02-28 20:24:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167767352382664.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:辅助角公式(辅助角公式推导).doc
本文 PDF 下载地址:辅助角公式(辅助角公式推导).pdf
留言与评论(共有 0 条评论) |